Enter a problem...
Algebra Examples
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form .
Step 1.2
Build a set of equations from the table such that .
Step 1.3
Calculate the values of and .
Step 1.3.1
Solve for in .
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Subtract from both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify the right side.
Step 1.3.2.2.1
Simplify .
Step 1.3.2.2.1.1
Multiply by .
Step 1.3.2.2.1.2
Add and .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify the right side.
Step 1.3.2.4.1
Simplify .
Step 1.3.2.4.1.1
Multiply by .
Step 1.3.2.4.1.2
Add and .
Step 1.3.3
Solve for in .
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Divide each term in by and simplify.
Step 1.3.3.2.1
Divide each term in by .
Step 1.3.3.2.2
Simplify the left side.
Step 1.3.3.2.2.1
Cancel the common factor of .
Step 1.3.3.2.2.1.1
Cancel the common factor.
Step 1.3.3.2.2.1.2
Divide by .
Step 1.3.3.2.3
Simplify the right side.
Step 1.3.3.2.3.1
Divide by .
Step 1.3.4
Replace all occurrences of with in each equation.
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Multiply by .
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Step 1.3.4.4.1
Multiply by .
Step 1.3.5
Since is not true, there is no solution.
No solution
No solution
Step 1.4
Since for the corresponding values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form .
Step 2.2
Build a set of equations from the table such that .
Step 2.3
Calculate the values of , , and .
Step 2.3.1
Solve for in .
Step 2.3.1.1
Rewrite the equation as .
Step 2.3.1.2
Move all terms not containing to the right side of the equation.
Step 2.3.1.2.1
Subtract from both sides of the equation.
Step 2.3.1.2.2
Subtract from both sides of the equation.
Step 2.3.2
Replace all occurrences of with in each equation.
Step 2.3.2.1
Replace all occurrences of in with .
Step 2.3.2.2
Simplify the right side.
Step 2.3.2.2.1
Simplify .
Step 2.3.2.2.1.1
Simplify each term.
Step 2.3.2.2.1.1.1
Raise to the power of .
Step 2.3.2.2.1.1.2
Apply the distributive property.
Step 2.3.2.2.1.1.3
Multiply by .
Step 2.3.2.2.1.1.4
Multiply by .
Step 2.3.2.2.1.1.5
Move to the left of .
Step 2.3.2.2.1.2
Simplify by adding terms.
Step 2.3.2.2.1.2.1
Add and .
Step 2.3.2.2.1.2.2
Add and .
Step 2.3.2.3
Replace all occurrences of in with .
Step 2.3.2.4
Simplify the right side.
Step 2.3.2.4.1
Simplify .
Step 2.3.2.4.1.1
Simplify each term.
Step 2.3.2.4.1.1.1
Raise to the power of .
Step 2.3.2.4.1.1.2
Apply the distributive property.
Step 2.3.2.4.1.1.3
Multiply by .
Step 2.3.2.4.1.1.4
Multiply by .
Step 2.3.2.4.1.1.5
Move to the left of .
Step 2.3.2.4.1.2
Simplify by adding terms.
Step 2.3.2.4.1.2.1
Add and .
Step 2.3.2.4.1.2.2
Add and .
Step 2.3.3
Solve for in .
Step 2.3.3.1
Rewrite the equation as .
Step 2.3.3.2
Add to both sides of the equation.
Step 2.3.3.3
Divide each term in by and simplify.
Step 2.3.3.3.1
Divide each term in by .
Step 2.3.3.3.2
Simplify the left side.
Step 2.3.3.3.2.1
Cancel the common factor of .
Step 2.3.3.3.2.1.1
Cancel the common factor.
Step 2.3.3.3.2.1.2
Divide by .
Step 2.3.3.3.3
Simplify the right side.
Step 2.3.3.3.3.1
Simplify each term.
Step 2.3.3.3.3.1.1
Cancel the common factor of and .
Step 2.3.3.3.3.1.1.1
Factor out of .
Step 2.3.3.3.3.1.1.2
Cancel the common factors.
Step 2.3.3.3.3.1.1.2.1
Factor out of .
Step 2.3.3.3.3.1.1.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.1.2.3
Rewrite the expression.
Step 2.3.3.3.3.1.2
Move the negative in front of the fraction.
Step 2.3.3.3.3.1.3
Cancel the common factor of and .
Step 2.3.3.3.3.1.3.1
Factor out of .
Step 2.3.3.3.3.1.3.2
Cancel the common factors.
Step 2.3.3.3.3.1.3.2.1
Factor out of .
Step 2.3.3.3.3.1.3.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.3.2.3
Rewrite the expression.
Step 2.3.3.3.3.1.4
Move the negative in front of the fraction.
Step 2.3.4
Replace all occurrences of with in each equation.
Step 2.3.4.1
Replace all occurrences of in with .
Step 2.3.4.2
Simplify the right side.
Step 2.3.4.2.1
Simplify .
Step 2.3.4.2.1.1
Simplify each term.
Step 2.3.4.2.1.1.1
Apply the distributive property.
Step 2.3.4.2.1.1.2
Multiply .
Step 2.3.4.2.1.1.2.1
Multiply by .
Step 2.3.4.2.1.1.2.2
Combine and .
Step 2.3.4.2.1.1.2.3
Multiply by .
Step 2.3.4.2.1.1.3
Multiply .
Step 2.3.4.2.1.1.3.1
Multiply by .
Step 2.3.4.2.1.1.3.2
Combine and .
Step 2.3.4.2.1.1.3.3
Multiply by .
Step 2.3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.3
Combine and .
Step 2.3.4.2.1.4
Combine the numerators over the common denominator.
Step 2.3.4.2.1.5
Combine the numerators over the common denominator.
Step 2.3.4.2.1.6
Multiply by .
Step 2.3.4.2.1.7
Subtract from .
Step 2.3.4.3
Replace all occurrences of in with .
Step 2.3.4.4
Simplify the right side.
Step 2.3.4.4.1
Simplify .
Step 2.3.4.4.1.1
Simplify each term.
Step 2.3.4.4.1.1.1
Apply the distributive property.
Step 2.3.4.4.1.1.2
Multiply .
Step 2.3.4.4.1.1.2.1
Multiply by .
Step 2.3.4.4.1.1.2.2
Multiply by .
Step 2.3.4.4.1.1.3
Multiply .
Step 2.3.4.4.1.1.3.1
Multiply by .
Step 2.3.4.4.1.1.3.2
Multiply by .
Step 2.3.4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.3
Combine and .
Step 2.3.4.4.1.4
Combine the numerators over the common denominator.
Step 2.3.4.4.1.5
Combine the numerators over the common denominator.
Step 2.3.4.4.1.6
Multiply by .
Step 2.3.4.4.1.7
Subtract from .
Step 2.3.5
Solve for in .
Step 2.3.5.1
Rewrite the equation as .
Step 2.3.5.2
Multiply both sides by .
Step 2.3.5.3
Simplify.
Step 2.3.5.3.1
Simplify the left side.
Step 2.3.5.3.1.1
Simplify .
Step 2.3.5.3.1.1.1
Cancel the common factor of .
Step 2.3.5.3.1.1.1.1
Cancel the common factor.
Step 2.3.5.3.1.1.1.2
Rewrite the expression.
Step 2.3.5.3.1.1.2
Reorder and .
Step 2.3.5.3.2
Simplify the right side.
Step 2.3.5.3.2.1
Multiply by .
Step 2.3.5.4
Solve for .
Step 2.3.5.4.1
Move all terms not containing to the right side of the equation.
Step 2.3.5.4.1.1
Subtract from both sides of the equation.
Step 2.3.5.4.1.2
Subtract from .
Step 2.3.5.4.2
Divide each term in by and simplify.
Step 2.3.5.4.2.1
Divide each term in by .
Step 2.3.5.4.2.2
Simplify the left side.
Step 2.3.5.4.2.2.1
Dividing two negative values results in a positive value.
Step 2.3.5.4.2.2.2
Divide by .
Step 2.3.5.4.2.3
Simplify the right side.
Step 2.3.5.4.2.3.1
Divide by .
Step 2.3.6
Replace all occurrences of with in each equation.
Step 2.3.6.1
Replace all occurrences of in with .
Step 2.3.6.2
Simplify .
Step 2.3.6.2.1
Simplify the left side.
Step 2.3.6.2.1.1
Remove parentheses.
Step 2.3.6.2.2
Simplify the right side.
Step 2.3.6.2.2.1
Simplify .
Step 2.3.6.2.2.1.1
Subtract from .
Step 2.3.6.2.2.1.2
Divide by .
Step 2.3.6.3
Replace all occurrences of in with .
Step 2.3.6.4
Simplify the right side.
Step 2.3.6.4.1
Simplify .
Step 2.3.6.4.1.1
Combine the numerators over the common denominator.
Step 2.3.6.4.1.2
Simplify the expression.
Step 2.3.6.4.1.2.1
Multiply by .
Step 2.3.6.4.1.2.2
Add and .
Step 2.3.6.4.1.2.3
Divide by .
Step 2.3.7
List all of the solutions.
Step 2.4
Calculate the value of using each value in the table and compare this value to the given value in the table.
Step 2.4.1
Calculate the value of such that when , , , and .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Multiply by .
Step 2.4.1.1.2
One to any power is one.
Step 2.4.1.1.3
Multiply by .
Step 2.4.1.2
Simplify by adding and subtracting.
Step 2.4.1.2.1
Add and .
Step 2.4.1.2.2
Subtract from .
Step 2.4.2
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.3
Calculate the value of such that when , , , and .
Step 2.4.3.1
Simplify each term.
Step 2.4.3.1.1
Multiply by .
Step 2.4.3.1.2
Raise to the power of .
Step 2.4.3.1.3
Multiply by .
Step 2.4.3.2
Simplify by adding and subtracting.
Step 2.4.3.2.1
Add and .
Step 2.4.3.2.2
Subtract from .
Step 2.4.4
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.5
Calculate the value of such that when , , , and .
Step 2.4.5.1
Simplify each term.
Step 2.4.5.1.1
Multiply by .
Step 2.4.5.1.2
Raise to the power of .
Step 2.4.5.1.3
Multiply by .
Step 2.4.5.2
Simplify by adding and subtracting.
Step 2.4.5.2.1
Add and .
Step 2.4.5.2.2
Subtract from .
Step 2.4.6
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.7
Since for the corresponding values, the function is quadratic.
The function is quadratic
The function is quadratic
The function is quadratic
Step 3
Since all , the function is quadratic and follows the form .