Algebra Examples

Find the Absolute Max and Min over the Interval f(x)=6x^3+8x^2-8x-7 ; [1,2]
;
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.2
Evaluate .
Tap for more steps...
Step 1.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.3
Multiply by .
Step 1.1.1.3
Evaluate .
Tap for more steps...
Step 1.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.3.3
Multiply by .
Step 1.1.1.4
Evaluate .
Tap for more steps...
Step 1.1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.4.3
Multiply by .
Step 1.1.1.5
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.5.2
Add and .
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Factor out of .
Tap for more steps...
Step 1.2.2.1
Factor out of .
Step 1.2.2.2
Factor out of .
Step 1.2.2.3
Factor out of .
Step 1.2.2.4
Factor out of .
Step 1.2.2.5
Factor out of .
Step 1.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.3.1
Divide each term in by .
Step 1.2.3.2
Simplify the left side.
Tap for more steps...
Step 1.2.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.1.1
Cancel the common factor.
Step 1.2.3.2.1.2
Divide by .
Step 1.2.3.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.3.1
Divide by .
Step 1.2.4
Use the quadratic formula to find the solutions.
Step 1.2.5
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.6
Simplify.
Tap for more steps...
Step 1.2.6.1
Simplify the numerator.
Tap for more steps...
Step 1.2.6.1.1
Raise to the power of .
Step 1.2.6.1.2
Multiply .
Tap for more steps...
Step 1.2.6.1.2.1
Multiply by .
Step 1.2.6.1.2.2
Multiply by .
Step 1.2.6.1.3
Add and .
Step 1.2.6.1.4
Rewrite as .
Tap for more steps...
Step 1.2.6.1.4.1
Factor out of .
Step 1.2.6.1.4.2
Rewrite as .
Step 1.2.6.1.5
Pull terms out from under the radical.
Step 1.2.6.2
Multiply by .
Step 1.2.6.3
Simplify .
Step 1.2.7
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.7.1
Simplify the numerator.
Tap for more steps...
Step 1.2.7.1.1
Raise to the power of .
Step 1.2.7.1.2
Multiply .
Tap for more steps...
Step 1.2.7.1.2.1
Multiply by .
Step 1.2.7.1.2.2
Multiply by .
Step 1.2.7.1.3
Add and .
Step 1.2.7.1.4
Rewrite as .
Tap for more steps...
Step 1.2.7.1.4.1
Factor out of .
Step 1.2.7.1.4.2
Rewrite as .
Step 1.2.7.1.5
Pull terms out from under the radical.
Step 1.2.7.2
Multiply by .
Step 1.2.7.3
Simplify .
Step 1.2.7.4
Change the to .
Step 1.2.7.5
Rewrite as .
Step 1.2.7.6
Factor out of .
Step 1.2.7.7
Factor out of .
Step 1.2.7.8
Move the negative in front of the fraction.
Step 1.2.8
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.8.1
Simplify the numerator.
Tap for more steps...
Step 1.2.8.1.1
Raise to the power of .
Step 1.2.8.1.2
Multiply .
Tap for more steps...
Step 1.2.8.1.2.1
Multiply by .
Step 1.2.8.1.2.2
Multiply by .
Step 1.2.8.1.3
Add and .
Step 1.2.8.1.4
Rewrite as .
Tap for more steps...
Step 1.2.8.1.4.1
Factor out of .
Step 1.2.8.1.4.2
Rewrite as .
Step 1.2.8.1.5
Pull terms out from under the radical.
Step 1.2.8.2
Multiply by .
Step 1.2.8.3
Simplify .
Step 1.2.8.4
Change the to .
Step 1.2.8.5
Rewrite as .
Step 1.2.8.6
Factor out of .
Step 1.2.8.7
Factor out of .
Step 1.2.8.8
Move the negative in front of the fraction.
Step 1.2.9
The final answer is the combination of both solutions.
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at .
Tap for more steps...
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Use the power rule to distribute the exponent.
Tap for more steps...
Step 1.4.1.2.1.1.1
Apply the product rule to .
Step 1.4.1.2.1.1.2
Apply the product rule to .
Step 1.4.1.2.1.2
Raise to the power of .
Step 1.4.1.2.1.3
Raise to the power of .
Step 1.4.1.2.1.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.1.2.1.4.1
Move the leading negative in into the numerator.
Step 1.4.1.2.1.4.2
Factor out of .
Step 1.4.1.2.1.4.3
Factor out of .
Step 1.4.1.2.1.4.4
Cancel the common factor.
Step 1.4.1.2.1.4.5
Rewrite the expression.
Step 1.4.1.2.1.5
Combine and .
Step 1.4.1.2.1.6
Multiply by .
Step 1.4.1.2.1.7
Use the Binomial Theorem.
Step 1.4.1.2.1.8
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.8.1
Raise to the power of .
Step 1.4.1.2.1.8.2
Raise to the power of .
Step 1.4.1.2.1.8.3
Multiply by .
Step 1.4.1.2.1.8.4
Multiply by .
Step 1.4.1.2.1.8.5
Multiply by .
Step 1.4.1.2.1.8.6
Apply the product rule to .
Step 1.4.1.2.1.8.7
Raise to the power of .
Step 1.4.1.2.1.8.8
Rewrite as .
Tap for more steps...
Step 1.4.1.2.1.8.8.1
Use to rewrite as .
Step 1.4.1.2.1.8.8.2
Apply the power rule and multiply exponents, .
Step 1.4.1.2.1.8.8.3
Combine and .
Step 1.4.1.2.1.8.8.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.1.2.1.8.8.4.1
Cancel the common factor.
Step 1.4.1.2.1.8.8.4.2
Rewrite the expression.
Step 1.4.1.2.1.8.8.5
Evaluate the exponent.
Step 1.4.1.2.1.8.9
Multiply .
Tap for more steps...
Step 1.4.1.2.1.8.9.1
Multiply by .
Step 1.4.1.2.1.8.9.2
Multiply by .
Step 1.4.1.2.1.8.10
Apply the product rule to .
Step 1.4.1.2.1.8.11
Raise to the power of .
Step 1.4.1.2.1.8.12
Rewrite as .
Step 1.4.1.2.1.8.13
Raise to the power of .
Step 1.4.1.2.1.8.14
Rewrite as .
Tap for more steps...
Step 1.4.1.2.1.8.14.1
Factor out of .
Step 1.4.1.2.1.8.14.2
Rewrite as .
Step 1.4.1.2.1.8.15
Pull terms out from under the radical.
Step 1.4.1.2.1.8.16
Multiply by .
Step 1.4.1.2.1.9
Add and .
Step 1.4.1.2.1.10
Subtract from .
Step 1.4.1.2.1.11
Move the negative in front of the fraction.
Step 1.4.1.2.1.12
Use the power rule to distribute the exponent.
Tap for more steps...
Step 1.4.1.2.1.12.1
Apply the product rule to .
Step 1.4.1.2.1.12.2
Apply the product rule to .
Step 1.4.1.2.1.13
Raise to the power of .
Step 1.4.1.2.1.14
Multiply by .
Step 1.4.1.2.1.15
Raise to the power of .
Step 1.4.1.2.1.16
Rewrite as .
Step 1.4.1.2.1.17
Expand using the FOIL Method.
Tap for more steps...
Step 1.4.1.2.1.17.1
Apply the distributive property.
Step 1.4.1.2.1.17.2
Apply the distributive property.
Step 1.4.1.2.1.17.3
Apply the distributive property.
Step 1.4.1.2.1.18
Simplify and combine like terms.
Tap for more steps...
Step 1.4.1.2.1.18.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.18.1.1
Multiply by .
Step 1.4.1.2.1.18.1.2
Multiply by .
Step 1.4.1.2.1.18.1.3
Multiply by .
Step 1.4.1.2.1.18.1.4
Multiply .
Tap for more steps...
Step 1.4.1.2.1.18.1.4.1
Multiply by .
Step 1.4.1.2.1.18.1.4.2
Raise to the power of .
Step 1.4.1.2.1.18.1.4.3
Raise to the power of .
Step 1.4.1.2.1.18.1.4.4
Use the power rule to combine exponents.
Step 1.4.1.2.1.18.1.4.5
Add and .
Step 1.4.1.2.1.18.1.5
Rewrite as .
Tap for more steps...
Step 1.4.1.2.1.18.1.5.1
Use to rewrite as .
Step 1.4.1.2.1.18.1.5.2
Apply the power rule and multiply exponents, .
Step 1.4.1.2.1.18.1.5.3
Combine and .
Step 1.4.1.2.1.18.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.1.2.1.18.1.5.4.1
Cancel the common factor.
Step 1.4.1.2.1.18.1.5.4.2
Rewrite the expression.
Step 1.4.1.2.1.18.1.5.5
Evaluate the exponent.
Step 1.4.1.2.1.18.1.6
Multiply by .
Step 1.4.1.2.1.18.2
Add and .
Step 1.4.1.2.1.18.3
Subtract from .
Step 1.4.1.2.1.19
Combine and .
Step 1.4.1.2.1.20
Multiply .
Tap for more steps...
Step 1.4.1.2.1.20.1
Multiply by .
Step 1.4.1.2.1.20.2
Combine and .
Step 1.4.1.2.2
Find the common denominator.
Tap for more steps...
Step 1.4.1.2.2.1
Multiply by .
Step 1.4.1.2.2.2
Multiply by .
Step 1.4.1.2.2.3
Multiply by .
Step 1.4.1.2.2.4
Multiply by .
Step 1.4.1.2.2.5
Write as a fraction with denominator .
Step 1.4.1.2.2.6
Multiply by .
Step 1.4.1.2.2.7
Multiply by .
Step 1.4.1.2.2.8
Reorder the factors of .
Step 1.4.1.2.2.9
Multiply by .
Step 1.4.1.2.2.10
Multiply by .
Step 1.4.1.2.3
Combine the numerators over the common denominator.
Step 1.4.1.2.4
Simplify each term.
Tap for more steps...
Step 1.4.1.2.4.1
Apply the distributive property.
Step 1.4.1.2.4.2
Multiply by .
Step 1.4.1.2.4.3
Multiply by .
Step 1.4.1.2.4.4
Apply the distributive property.
Step 1.4.1.2.4.5
Multiply by .
Step 1.4.1.2.4.6
Multiply by .
Step 1.4.1.2.4.7
Apply the distributive property.
Step 1.4.1.2.4.8
Multiply by .
Step 1.4.1.2.4.9
Multiply by .
Step 1.4.1.2.4.10
Apply the distributive property.
Step 1.4.1.2.4.11
Multiply by .
Step 1.4.1.2.4.12
Multiply by .
Step 1.4.1.2.4.13
Apply the distributive property.
Step 1.4.1.2.4.14
Multiply by .
Step 1.4.1.2.4.15
Multiply by .
Step 1.4.1.2.4.16
Multiply by .
Step 1.4.1.2.5
Simplify terms.
Tap for more steps...
Step 1.4.1.2.5.1
Add and .
Step 1.4.1.2.5.2
Simplify by adding and subtracting.
Tap for more steps...
Step 1.4.1.2.5.2.1
Add and .
Step 1.4.1.2.5.2.2
Subtract from .
Step 1.4.1.2.5.3
Subtract from .
Step 1.4.1.2.5.4
Subtract from .
Step 1.4.1.2.5.5
Rewrite as .
Step 1.4.1.2.5.6
Factor out of .
Step 1.4.1.2.5.7
Factor out of .
Step 1.4.1.2.5.8
Move the negative in front of the fraction.
Step 1.4.2
Evaluate at .
Tap for more steps...
Step 1.4.2.1
Substitute for .
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
Use the power rule to distribute the exponent.
Tap for more steps...
Step 1.4.2.2.1.1.1
Apply the product rule to .
Step 1.4.2.2.1.1.2
Apply the product rule to .
Step 1.4.2.2.1.2
Raise to the power of .
Step 1.4.2.2.1.3
Raise to the power of .
Step 1.4.2.2.1.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.2.1.4.1
Move the leading negative in into the numerator.
Step 1.4.2.2.1.4.2
Factor out of .
Step 1.4.2.2.1.4.3
Factor out of .
Step 1.4.2.2.1.4.4
Cancel the common factor.
Step 1.4.2.2.1.4.5
Rewrite the expression.
Step 1.4.2.2.1.5
Combine and .
Step 1.4.2.2.1.6
Multiply by .
Step 1.4.2.2.1.7
Use the Binomial Theorem.
Step 1.4.2.2.1.8
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.8.1
Raise to the power of .
Step 1.4.2.2.1.8.2
Raise to the power of .
Step 1.4.2.2.1.8.3
Multiply by .
Step 1.4.2.2.1.8.4
Multiply by .
Step 1.4.2.2.1.8.5
Multiply by .
Step 1.4.2.2.1.8.6
Apply the product rule to .
Step 1.4.2.2.1.8.7
Raise to the power of .
Step 1.4.2.2.1.8.8
Rewrite as .
Tap for more steps...
Step 1.4.2.2.1.8.8.1
Use to rewrite as .
Step 1.4.2.2.1.8.8.2
Apply the power rule and multiply exponents, .
Step 1.4.2.2.1.8.8.3
Combine and .
Step 1.4.2.2.1.8.8.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.2.1.8.8.4.1
Cancel the common factor.
Step 1.4.2.2.1.8.8.4.2
Rewrite the expression.
Step 1.4.2.2.1.8.8.5
Evaluate the exponent.
Step 1.4.2.2.1.8.9
Multiply .
Tap for more steps...
Step 1.4.2.2.1.8.9.1
Multiply by .
Step 1.4.2.2.1.8.9.2
Multiply by .
Step 1.4.2.2.1.8.10
Apply the product rule to .
Step 1.4.2.2.1.8.11
Raise to the power of .
Step 1.4.2.2.1.8.12
Rewrite as .
Step 1.4.2.2.1.8.13
Raise to the power of .
Step 1.4.2.2.1.8.14
Rewrite as .
Tap for more steps...
Step 1.4.2.2.1.8.14.1
Factor out of .
Step 1.4.2.2.1.8.14.2
Rewrite as .
Step 1.4.2.2.1.8.15
Pull terms out from under the radical.
Step 1.4.2.2.1.8.16
Multiply by .
Step 1.4.2.2.1.9
Add and .
Step 1.4.2.2.1.10
Add and .
Step 1.4.2.2.1.11
Move the negative in front of the fraction.
Step 1.4.2.2.1.12
Use the power rule to distribute the exponent.
Tap for more steps...
Step 1.4.2.2.1.12.1
Apply the product rule to .
Step 1.4.2.2.1.12.2
Apply the product rule to .
Step 1.4.2.2.1.13
Raise to the power of .
Step 1.4.2.2.1.14
Multiply by .
Step 1.4.2.2.1.15
Raise to the power of .
Step 1.4.2.2.1.16
Rewrite as .
Step 1.4.2.2.1.17
Expand using the FOIL Method.
Tap for more steps...
Step 1.4.2.2.1.17.1
Apply the distributive property.
Step 1.4.2.2.1.17.2
Apply the distributive property.
Step 1.4.2.2.1.17.3
Apply the distributive property.
Step 1.4.2.2.1.18
Simplify and combine like terms.
Tap for more steps...
Step 1.4.2.2.1.18.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.18.1.1
Multiply by .
Step 1.4.2.2.1.18.1.2
Multiply by .
Step 1.4.2.2.1.18.1.3
Multiply by .
Step 1.4.2.2.1.18.1.4
Multiply .
Tap for more steps...
Step 1.4.2.2.1.18.1.4.1
Multiply by .
Step 1.4.2.2.1.18.1.4.2
Raise to the power of .
Step 1.4.2.2.1.18.1.4.3
Raise to the power of .
Step 1.4.2.2.1.18.1.4.4
Use the power rule to combine exponents.
Step 1.4.2.2.1.18.1.4.5
Add and .
Step 1.4.2.2.1.18.1.5
Rewrite as .
Tap for more steps...
Step 1.4.2.2.1.18.1.5.1
Use to rewrite as .
Step 1.4.2.2.1.18.1.5.2
Apply the power rule and multiply exponents, .
Step 1.4.2.2.1.18.1.5.3
Combine and .
Step 1.4.2.2.1.18.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.2.1.18.1.5.4.1
Cancel the common factor.
Step 1.4.2.2.1.18.1.5.4.2
Rewrite the expression.
Step 1.4.2.2.1.18.1.5.5
Evaluate the exponent.
Step 1.4.2.2.1.18.1.6
Multiply by .
Step 1.4.2.2.1.18.2
Add and .
Step 1.4.2.2.1.18.3
Add and .
Step 1.4.2.2.1.19
Combine and .
Step 1.4.2.2.1.20
Multiply .
Tap for more steps...
Step 1.4.2.2.1.20.1
Multiply by .
Step 1.4.2.2.1.20.2
Combine and .
Step 1.4.2.2.2
Find the common denominator.
Tap for more steps...
Step 1.4.2.2.2.1
Multiply by .
Step 1.4.2.2.2.2
Multiply by .
Step 1.4.2.2.2.3
Multiply by .
Step 1.4.2.2.2.4
Multiply by .
Step 1.4.2.2.2.5
Write as a fraction with denominator .
Step 1.4.2.2.2.6
Multiply by .
Step 1.4.2.2.2.7
Multiply by .
Step 1.4.2.2.2.8
Reorder the factors of .
Step 1.4.2.2.2.9
Multiply by .
Step 1.4.2.2.2.10
Multiply by .
Step 1.4.2.2.3
Combine the numerators over the common denominator.
Step 1.4.2.2.4
Simplify each term.
Tap for more steps...
Step 1.4.2.2.4.1
Apply the distributive property.
Step 1.4.2.2.4.2
Multiply by .
Step 1.4.2.2.4.3
Multiply by .
Step 1.4.2.2.4.4
Apply the distributive property.
Step 1.4.2.2.4.5
Multiply by .
Step 1.4.2.2.4.6
Multiply by .
Step 1.4.2.2.4.7
Apply the distributive property.
Step 1.4.2.2.4.8
Multiply by .
Step 1.4.2.2.4.9
Multiply by .
Step 1.4.2.2.4.10
Apply the distributive property.
Step 1.4.2.2.4.11
Multiply by .
Step 1.4.2.2.4.12
Multiply by .
Step 1.4.2.2.4.13
Apply the distributive property.
Step 1.4.2.2.4.14
Multiply by .
Step 1.4.2.2.4.15
Multiply by .
Step 1.4.2.2.4.16
Multiply by .
Step 1.4.2.2.5
Simplify terms.
Tap for more steps...
Step 1.4.2.2.5.1
Add and .
Step 1.4.2.2.5.2
Simplify by adding and subtracting.
Tap for more steps...
Step 1.4.2.2.5.2.1
Add and .
Step 1.4.2.2.5.2.2
Subtract from .
Step 1.4.2.2.5.3
Add and .
Step 1.4.2.2.5.4
Add and .
Step 1.4.2.2.5.5
Rewrite as .
Step 1.4.2.2.5.6
Factor out of .
Step 1.4.2.2.5.7
Factor out of .
Step 1.4.2.2.5.8
Move the negative in front of the fraction.
Step 1.4.3
List all of the points.
Step 2
Exclude the points that are not on the interval.
Step 3
Evaluate at the included endpoints.
Tap for more steps...
Step 3.1
Evaluate at .
Tap for more steps...
Step 3.1.1
Substitute for .
Step 3.1.2
Simplify.
Tap for more steps...
Step 3.1.2.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1
One to any power is one.
Step 3.1.2.1.2
Multiply by .
Step 3.1.2.1.3
One to any power is one.
Step 3.1.2.1.4
Multiply by .
Step 3.1.2.1.5
Multiply by .
Step 3.1.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 3.1.2.2.1
Add and .
Step 3.1.2.2.2
Subtract from .
Step 3.1.2.2.3
Subtract from .
Step 3.2
Evaluate at .
Tap for more steps...
Step 3.2.1
Substitute for .
Step 3.2.2
Simplify.
Tap for more steps...
Step 3.2.2.1
Simplify each term.
Tap for more steps...
Step 3.2.2.1.1
Raise to the power of .
Step 3.2.2.1.2
Multiply by .
Step 3.2.2.1.3
Raise to the power of .
Step 3.2.2.1.4
Multiply by .
Step 3.2.2.1.5
Multiply by .
Step 3.2.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 3.2.2.2.1
Add and .
Step 3.2.2.2.2
Subtract from .
Step 3.2.2.2.3
Subtract from .
Step 3.3
List all of the points.
Step 4
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 5