Algebra Examples

Find the Absolute Max and Min over the Interval f(x)=x^4-5x^3+3x^2+9x-3 ; (-5,5)
;
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2
Evaluate .
Tap for more steps...
Step 1.1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2.3
Multiply by .
Step 1.1.1.3
Evaluate .
Tap for more steps...
Step 1.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.3.3
Multiply by .
Step 1.1.1.4
Evaluate .
Tap for more steps...
Step 1.1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.4.3
Multiply by .
Step 1.1.1.5
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.5.2
Add and .
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Factor using the rational roots test.
Tap for more steps...
Step 1.2.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 1.2.2.2
Find every combination of . These are the possible roots of the polynomial function.
Step 1.2.2.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Tap for more steps...
Step 1.2.2.3.1
Substitute into the polynomial.
Step 1.2.2.3.2
Raise to the power of .
Step 1.2.2.3.3
Multiply by .
Step 1.2.2.3.4
Raise to the power of .
Step 1.2.2.3.5
Multiply by .
Step 1.2.2.3.6
Subtract from .
Step 1.2.2.3.7
Multiply by .
Step 1.2.2.3.8
Add and .
Step 1.2.2.3.9
Add and .
Step 1.2.2.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 1.2.2.5
Divide by .
Tap for more steps...
Step 1.2.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
--++
Step 1.2.2.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
--++
Step 1.2.2.5.3
Multiply the new quotient term by the divisor.
--++
+-
Step 1.2.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
--++
-+
Step 1.2.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--++
-+
-
Step 1.2.2.5.6
Pull the next terms from the original dividend down into the current dividend.
--++
-+
-+
Step 1.2.2.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
-
--++
-+
-+
Step 1.2.2.5.8
Multiply the new quotient term by the divisor.
-
--++
-+
-+
-+
Step 1.2.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
-
--++
-+
-+
+-
Step 1.2.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
--++
-+
-+
+-
-
Step 1.2.2.5.11
Pull the next terms from the original dividend down into the current dividend.
-
--++
-+
-+
+-
-+
Step 1.2.2.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
--
--++
-+
-+
+-
-+
Step 1.2.2.5.13
Multiply the new quotient term by the divisor.
--
--++
-+
-+
+-
-+
-+
Step 1.2.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
--
--++
-+
-+
+-
-+
+-
Step 1.2.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--
--++
-+
-+
+-
-+
+-
Step 1.2.2.5.16
Since the remander is , the final answer is the quotient.
Step 1.2.2.6
Write as a set of factors.
Step 1.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.4
Set equal to and solve for .
Tap for more steps...
Step 1.2.4.1
Set equal to .
Step 1.2.4.2
Add to both sides of the equation.
Step 1.2.5
Set equal to and solve for .
Tap for more steps...
Step 1.2.5.1
Set equal to .
Step 1.2.5.2
Solve for .
Tap for more steps...
Step 1.2.5.2.1
Use the quadratic formula to find the solutions.
Step 1.2.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.5.2.3
Simplify.
Tap for more steps...
Step 1.2.5.2.3.1
Simplify the numerator.
Tap for more steps...
Step 1.2.5.2.3.1.1
Raise to the power of .
Step 1.2.5.2.3.1.2
Multiply .
Tap for more steps...
Step 1.2.5.2.3.1.2.1
Multiply by .
Step 1.2.5.2.3.1.2.2
Multiply by .
Step 1.2.5.2.3.1.3
Add and .
Step 1.2.5.2.3.2
Multiply by .
Step 1.2.5.2.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.5.2.4.1
Simplify the numerator.
Tap for more steps...
Step 1.2.5.2.4.1.1
Raise to the power of .
Step 1.2.5.2.4.1.2
Multiply .
Tap for more steps...
Step 1.2.5.2.4.1.2.1
Multiply by .
Step 1.2.5.2.4.1.2.2
Multiply by .
Step 1.2.5.2.4.1.3
Add and .
Step 1.2.5.2.4.2
Multiply by .
Step 1.2.5.2.4.3
Change the to .
Step 1.2.5.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.5.2.5.1
Simplify the numerator.
Tap for more steps...
Step 1.2.5.2.5.1.1
Raise to the power of .
Step 1.2.5.2.5.1.2
Multiply .
Tap for more steps...
Step 1.2.5.2.5.1.2.1
Multiply by .
Step 1.2.5.2.5.1.2.2
Multiply by .
Step 1.2.5.2.5.1.3
Add and .
Step 1.2.5.2.5.2
Multiply by .
Step 1.2.5.2.5.3
Change the to .
Step 1.2.5.2.6
The final answer is the combination of both solutions.
Step 1.2.6
The final solution is all the values that make true.
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at .
Tap for more steps...
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Raise to the power of .
Step 1.4.1.2.1.2
Raise to the power of .
Step 1.4.1.2.1.3
Multiply by .
Step 1.4.1.2.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 1.4.1.2.1.4.1
Multiply by .
Tap for more steps...
Step 1.4.1.2.1.4.1.1
Raise to the power of .
Step 1.4.1.2.1.4.1.2
Use the power rule to combine exponents.
Step 1.4.1.2.1.4.2
Add and .
Step 1.4.1.2.1.5
Raise to the power of .
Step 1.4.1.2.1.6
Multiply by .
Step 1.4.1.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 1.4.1.2.2.1
Subtract from .
Step 1.4.1.2.2.2
Add and .
Step 1.4.1.2.2.3
Add and .
Step 1.4.1.2.2.4
Subtract from .
Step 1.4.2
Evaluate at .
Tap for more steps...
Step 1.4.2.1
Substitute for .
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
Apply the product rule to .
Step 1.4.2.2.1.2
Raise to the power of .
Step 1.4.2.2.1.3
Use the Binomial Theorem.
Step 1.4.2.2.1.4
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.4.1
Raise to the power of .
Step 1.4.2.2.1.4.2
Raise to the power of .
Step 1.4.2.2.1.4.3
Multiply by .
Step 1.4.2.2.1.4.4
Raise to the power of .
Step 1.4.2.2.1.4.5
Multiply by .
Step 1.4.2.2.1.4.6
Rewrite as .
Tap for more steps...
Step 1.4.2.2.1.4.6.1
Use to rewrite as .
Step 1.4.2.2.1.4.6.2
Apply the power rule and multiply exponents, .
Step 1.4.2.2.1.4.6.3
Combine and .
Step 1.4.2.2.1.4.6.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.2.1.4.6.4.1
Cancel the common factor.
Step 1.4.2.2.1.4.6.4.2
Rewrite the expression.
Step 1.4.2.2.1.4.6.5
Evaluate the exponent.
Step 1.4.2.2.1.4.7
Multiply by .
Step 1.4.2.2.1.4.8
Multiply by .
Step 1.4.2.2.1.4.9
Rewrite as .
Step 1.4.2.2.1.4.10
Raise to the power of .
Step 1.4.2.2.1.4.11
Rewrite as .
Tap for more steps...
Step 1.4.2.2.1.4.11.1
Factor out of .
Step 1.4.2.2.1.4.11.2
Rewrite as .
Step 1.4.2.2.1.4.12
Pull terms out from under the radical.
Step 1.4.2.2.1.4.13
Multiply by .
Step 1.4.2.2.1.4.14
Rewrite as .
Tap for more steps...
Step 1.4.2.2.1.4.14.1
Use to rewrite as .
Step 1.4.2.2.1.4.14.2
Apply the power rule and multiply exponents, .
Step 1.4.2.2.1.4.14.3
Combine and .
Step 1.4.2.2.1.4.14.4
Cancel the common factor of and .
Tap for more steps...
Step 1.4.2.2.1.4.14.4.1
Factor out of .
Step 1.4.2.2.1.4.14.4.2
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.1.4.14.4.2.1
Factor out of .
Step 1.4.2.2.1.4.14.4.2.2
Cancel the common factor.
Step 1.4.2.2.1.4.14.4.2.3
Rewrite the expression.
Step 1.4.2.2.1.4.14.4.2.4
Divide by .
Step 1.4.2.2.1.4.15
Raise to the power of .
Step 1.4.2.2.1.5
Add and .
Step 1.4.2.2.1.6
Add and .
Step 1.4.2.2.1.7
Add and .
Step 1.4.2.2.1.8
Cancel the common factor of and .
Tap for more steps...
Step 1.4.2.2.1.8.1
Factor out of .
Step 1.4.2.2.1.8.2
Factor out of .
Step 1.4.2.2.1.8.3
Factor out of .
Step 1.4.2.2.1.8.4
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.1.8.4.1
Factor out of .
Step 1.4.2.2.1.8.4.2
Cancel the common factor.
Step 1.4.2.2.1.8.4.3
Rewrite the expression.
Step 1.4.2.2.1.9
Apply the product rule to .
Step 1.4.2.2.1.10
Raise to the power of .
Step 1.4.2.2.1.11
Use the Binomial Theorem.
Step 1.4.2.2.1.12
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.12.1
Raise to the power of .
Step 1.4.2.2.1.12.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.4.2.2.1.12.2.1
Multiply by .
Tap for more steps...
Step 1.4.2.2.1.12.2.1.1
Raise to the power of .
Step 1.4.2.2.1.12.2.1.2
Use the power rule to combine exponents.
Step 1.4.2.2.1.12.2.2
Add and .
Step 1.4.2.2.1.12.3
Raise to the power of .
Step 1.4.2.2.1.12.4
Multiply by .
Step 1.4.2.2.1.12.5
Rewrite as .
Tap for more steps...
Step 1.4.2.2.1.12.5.1
Use to rewrite as .
Step 1.4.2.2.1.12.5.2
Apply the power rule and multiply exponents, .
Step 1.4.2.2.1.12.5.3
Combine and .
Step 1.4.2.2.1.12.5.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.2.2.1.12.5.4.1
Cancel the common factor.
Step 1.4.2.2.1.12.5.4.2
Rewrite the expression.
Step 1.4.2.2.1.12.5.5
Evaluate the exponent.
Step 1.4.2.2.1.12.6
Multiply by .
Step 1.4.2.2.1.12.7
Rewrite as .
Step 1.4.2.2.1.12.8
Raise to the power of .
Step 1.4.2.2.1.12.9
Rewrite as .
Tap for more steps...
Step 1.4.2.2.1.12.9.1
Factor out of .
Step 1.4.2.2.1.12.9.2
Rewrite as .
Step 1.4.2.2.1.12.10
Pull terms out from under the radical.
Step 1.4.2.2.1.13
Add and .
Step 1.4.2.2.1.14
Add and .
Step 1.4.2.2.1.15
Cancel the common factor of and .
Tap for more steps...
Step 1.4.2.2.1.15.1
Factor out of .
Step 1.4.2.2.1.15.2
Factor out of .
Step 1.4.2.2.1.15.3
Factor out of .
Step 1.4.2.2.1.15.4
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.1.15.4.1
Factor out of .
Step 1.4.2.2.1.15.4.2
Cancel the common factor.
Step 1.4.2.2.1.15.4.3
Rewrite the expression.
Step 1.4.2.2.1.16
Combine and .
Step 1.4.2.2.1.17
Move the negative in front of the fraction.
Step 1.4.2.2.1.18
Apply the product rule to .
Step 1.4.2.2.1.19
Raise to the power of .
Step 1.4.2.2.1.20
Rewrite as .
Step 1.4.2.2.1.21
Expand using the FOIL Method.
Tap for more steps...
Step 1.4.2.2.1.21.1
Apply the distributive property.
Step 1.4.2.2.1.21.2
Apply the distributive property.
Step 1.4.2.2.1.21.3
Apply the distributive property.
Step 1.4.2.2.1.22
Simplify and combine like terms.
Tap for more steps...
Step 1.4.2.2.1.22.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.22.1.1
Multiply by .
Step 1.4.2.2.1.22.1.2
Move to the left of .
Step 1.4.2.2.1.22.1.3
Combine using the product rule for radicals.
Step 1.4.2.2.1.22.1.4
Multiply by .
Step 1.4.2.2.1.22.1.5
Rewrite as .
Step 1.4.2.2.1.22.1.6
Pull terms out from under the radical, assuming positive real numbers.
Step 1.4.2.2.1.22.2
Add and .
Step 1.4.2.2.1.22.3
Add and .
Step 1.4.2.2.1.23
Cancel the common factor of and .
Tap for more steps...
Step 1.4.2.2.1.23.1
Factor out of .
Step 1.4.2.2.1.23.2
Factor out of .
Step 1.4.2.2.1.23.3
Factor out of .
Step 1.4.2.2.1.23.4
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.1.23.4.1
Factor out of .
Step 1.4.2.2.1.23.4.2
Cancel the common factor.
Step 1.4.2.2.1.23.4.3
Rewrite the expression.
Step 1.4.2.2.1.24
Combine and .
Step 1.4.2.2.1.25
Combine and .
Step 1.4.2.2.2
Find the common denominator.
Tap for more steps...
Step 1.4.2.2.2.1
Multiply by .
Step 1.4.2.2.2.2
Multiply by .
Step 1.4.2.2.2.3
Multiply by .
Step 1.4.2.2.2.4
Multiply by .
Step 1.4.2.2.2.5
Multiply by .
Step 1.4.2.2.2.6
Multiply by .
Step 1.4.2.2.2.7
Write as a fraction with denominator .
Step 1.4.2.2.2.8
Multiply by .
Step 1.4.2.2.2.9
Multiply by .
Step 1.4.2.2.2.10
Reorder the factors of .
Step 1.4.2.2.2.11
Multiply by .
Step 1.4.2.2.2.12
Reorder the factors of .
Step 1.4.2.2.2.13
Multiply by .
Step 1.4.2.2.2.14
Multiply by .
Step 1.4.2.2.3
Combine the numerators over the common denominator.
Step 1.4.2.2.4
Simplify each term.
Tap for more steps...
Step 1.4.2.2.4.1
Apply the distributive property.
Step 1.4.2.2.4.2
Multiply by .
Step 1.4.2.2.4.3
Multiply by .
Step 1.4.2.2.4.4
Apply the distributive property.
Step 1.4.2.2.4.5
Multiply by .
Step 1.4.2.2.4.6
Multiply by .
Step 1.4.2.2.4.7
Apply the distributive property.
Step 1.4.2.2.4.8
Multiply by .
Step 1.4.2.2.4.9
Multiply by .
Step 1.4.2.2.4.10
Apply the distributive property.
Step 1.4.2.2.4.11
Multiply by .
Step 1.4.2.2.4.12
Multiply by .
Step 1.4.2.2.4.13
Apply the distributive property.
Step 1.4.2.2.4.14
Multiply by .
Step 1.4.2.2.4.15
Apply the distributive property.
Step 1.4.2.2.4.16
Multiply by .
Step 1.4.2.2.4.17
Multiply by .
Step 1.4.2.2.4.18
Multiply by .
Step 1.4.2.2.5
Simplify terms.
Tap for more steps...
Step 1.4.2.2.5.1
Subtract from .
Step 1.4.2.2.5.2
Simplify by adding and subtracting.
Tap for more steps...
Step 1.4.2.2.5.2.1
Add and .
Step 1.4.2.2.5.2.2
Add and .
Step 1.4.2.2.5.2.3
Subtract from .
Step 1.4.2.2.5.3
Subtract from .
Step 1.4.2.2.5.4
Add and .
Step 1.4.2.2.5.5
Add and .
Step 1.4.2.2.5.6
Rewrite as .
Step 1.4.2.2.5.7
Factor out of .
Step 1.4.2.2.5.8
Factor out of .
Step 1.4.2.2.5.9
Move the negative in front of the fraction.
Step 1.4.3
Evaluate at .
Tap for more steps...
Step 1.4.3.1
Substitute for .
Step 1.4.3.2
Simplify.
Tap for more steps...
Step 1.4.3.2.1
Simplify each term.
Tap for more steps...
Step 1.4.3.2.1.1
Apply the product rule to .
Step 1.4.3.2.1.2
Raise to the power of .
Step 1.4.3.2.1.3
Use the Binomial Theorem.
Step 1.4.3.2.1.4
Simplify each term.
Tap for more steps...
Step 1.4.3.2.1.4.1
Raise to the power of .
Step 1.4.3.2.1.4.2
Raise to the power of .
Step 1.4.3.2.1.4.3
Multiply by .
Step 1.4.3.2.1.4.4
Multiply by .
Step 1.4.3.2.1.4.5
Raise to the power of .
Step 1.4.3.2.1.4.6
Multiply by .
Step 1.4.3.2.1.4.7
Apply the product rule to .
Step 1.4.3.2.1.4.8
Raise to the power of .
Step 1.4.3.2.1.4.9
Multiply by .
Step 1.4.3.2.1.4.10
Rewrite as .
Tap for more steps...
Step 1.4.3.2.1.4.10.1
Use to rewrite as .
Step 1.4.3.2.1.4.10.2
Apply the power rule and multiply exponents, .
Step 1.4.3.2.1.4.10.3
Combine and .
Step 1.4.3.2.1.4.10.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.3.2.1.4.10.4.1
Cancel the common factor.
Step 1.4.3.2.1.4.10.4.2
Rewrite the expression.
Step 1.4.3.2.1.4.10.5
Evaluate the exponent.
Step 1.4.3.2.1.4.11
Multiply by .
Step 1.4.3.2.1.4.12
Multiply by .
Step 1.4.3.2.1.4.13
Apply the product rule to .
Step 1.4.3.2.1.4.14
Raise to the power of .
Step 1.4.3.2.1.4.15
Rewrite as .
Step 1.4.3.2.1.4.16
Raise to the power of .
Step 1.4.3.2.1.4.17
Rewrite as .
Tap for more steps...
Step 1.4.3.2.1.4.17.1
Factor out of .
Step 1.4.3.2.1.4.17.2
Rewrite as .
Step 1.4.3.2.1.4.18
Pull terms out from under the radical.
Step 1.4.3.2.1.4.19
Multiply by .
Step 1.4.3.2.1.4.20
Multiply by .
Step 1.4.3.2.1.4.21
Apply the product rule to .
Step 1.4.3.2.1.4.22
Raise to the power of .
Step 1.4.3.2.1.4.23
Multiply by .
Step 1.4.3.2.1.4.24
Rewrite as .
Tap for more steps...
Step 1.4.3.2.1.4.24.1
Use to rewrite as .
Step 1.4.3.2.1.4.24.2
Apply the power rule and multiply exponents, .
Step 1.4.3.2.1.4.24.3
Combine and .
Step 1.4.3.2.1.4.24.4
Cancel the common factor of and .
Tap for more steps...
Step 1.4.3.2.1.4.24.4.1
Factor out of .
Step 1.4.3.2.1.4.24.4.2
Cancel the common factors.
Tap for more steps...
Step 1.4.3.2.1.4.24.4.2.1
Factor out of .
Step 1.4.3.2.1.4.24.4.2.2
Cancel the common factor.
Step 1.4.3.2.1.4.24.4.2.3
Rewrite the expression.
Step 1.4.3.2.1.4.24.4.2.4
Divide by .
Step 1.4.3.2.1.4.25
Raise to the power of .
Step 1.4.3.2.1.5
Add and .
Step 1.4.3.2.1.6
Add and .
Step 1.4.3.2.1.7
Subtract from .
Step 1.4.3.2.1.8
Cancel the common factor of and .
Tap for more steps...
Step 1.4.3.2.1.8.1
Factor out of .
Step 1.4.3.2.1.8.2
Factor out of .
Step 1.4.3.2.1.8.3
Factor out of .
Step 1.4.3.2.1.8.4
Cancel the common factors.
Tap for more steps...
Step 1.4.3.2.1.8.4.1
Factor out of .
Step 1.4.3.2.1.8.4.2
Cancel the common factor.
Step 1.4.3.2.1.8.4.3
Rewrite the expression.
Step 1.4.3.2.1.9
Apply the product rule to .
Step 1.4.3.2.1.10
Raise to the power of .
Step 1.4.3.2.1.11
Use the Binomial Theorem.
Step 1.4.3.2.1.12
Simplify each term.
Tap for more steps...
Step 1.4.3.2.1.12.1
Raise to the power of .
Step 1.4.3.2.1.12.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.4.3.2.1.12.2.1
Multiply by .
Tap for more steps...
Step 1.4.3.2.1.12.2.1.1
Raise to the power of .
Step 1.4.3.2.1.12.2.1.2
Use the power rule to combine exponents.
Step 1.4.3.2.1.12.2.2
Add and .
Step 1.4.3.2.1.12.3
Raise to the power of .
Step 1.4.3.2.1.12.4
Multiply by .
Step 1.4.3.2.1.12.5
Multiply by .
Step 1.4.3.2.1.12.6
Apply the product rule to .
Step 1.4.3.2.1.12.7
Raise to the power of .
Step 1.4.3.2.1.12.8
Multiply by .
Step 1.4.3.2.1.12.9
Rewrite as .
Tap for more steps...
Step 1.4.3.2.1.12.9.1
Use to rewrite as .
Step 1.4.3.2.1.12.9.2
Apply the power rule and multiply exponents, .
Step 1.4.3.2.1.12.9.3
Combine and .
Step 1.4.3.2.1.12.9.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.3.2.1.12.9.4.1
Cancel the common factor.
Step 1.4.3.2.1.12.9.4.2
Rewrite the expression.
Step 1.4.3.2.1.12.9.5
Evaluate the exponent.
Step 1.4.3.2.1.12.10
Multiply by .
Step 1.4.3.2.1.12.11
Apply the product rule to .
Step 1.4.3.2.1.12.12
Raise to the power of .
Step 1.4.3.2.1.12.13
Rewrite as .
Step 1.4.3.2.1.12.14
Raise to the power of .
Step 1.4.3.2.1.12.15
Rewrite as .
Tap for more steps...
Step 1.4.3.2.1.12.15.1
Factor out of .
Step 1.4.3.2.1.12.15.2
Rewrite as .
Step 1.4.3.2.1.12.16
Pull terms out from under the radical.
Step 1.4.3.2.1.12.17
Multiply by .
Step 1.4.3.2.1.13
Add and .
Step 1.4.3.2.1.14
Subtract from .
Step 1.4.3.2.1.15
Cancel the common factor of and .
Tap for more steps...
Step 1.4.3.2.1.15.1
Factor out of .
Step 1.4.3.2.1.15.2
Factor out of .
Step 1.4.3.2.1.15.3
Factor out of .
Step 1.4.3.2.1.15.4
Cancel the common factors.
Tap for more steps...
Step 1.4.3.2.1.15.4.1
Factor out of .
Step 1.4.3.2.1.15.4.2
Cancel the common factor.
Step 1.4.3.2.1.15.4.3
Rewrite the expression.
Step 1.4.3.2.1.16
Combine and .
Step 1.4.3.2.1.17
Move the negative in front of the fraction.
Step 1.4.3.2.1.18
Apply the product rule to .
Step 1.4.3.2.1.19
Raise to the power of .
Step 1.4.3.2.1.20
Rewrite as .
Step 1.4.3.2.1.21
Expand using the FOIL Method.
Tap for more steps...
Step 1.4.3.2.1.21.1
Apply the distributive property.
Step 1.4.3.2.1.21.2
Apply the distributive property.
Step 1.4.3.2.1.21.3
Apply the distributive property.
Step 1.4.3.2.1.22
Simplify and combine like terms.
Tap for more steps...
Step 1.4.3.2.1.22.1
Simplify each term.
Tap for more steps...
Step 1.4.3.2.1.22.1.1
Multiply by .
Step 1.4.3.2.1.22.1.2
Multiply by .
Step 1.4.3.2.1.22.1.3
Multiply by .
Step 1.4.3.2.1.22.1.4
Multiply .
Tap for more steps...
Step 1.4.3.2.1.22.1.4.1
Multiply by .
Step 1.4.3.2.1.22.1.4.2
Multiply by .
Step 1.4.3.2.1.22.1.4.3
Raise to the power of .
Step 1.4.3.2.1.22.1.4.4
Raise to the power of .
Step 1.4.3.2.1.22.1.4.5
Use the power rule to combine exponents.
Step 1.4.3.2.1.22.1.4.6
Add and .
Step 1.4.3.2.1.22.1.5
Rewrite as .
Tap for more steps...
Step 1.4.3.2.1.22.1.5.1
Use to rewrite as .
Step 1.4.3.2.1.22.1.5.2
Apply the power rule and multiply exponents, .
Step 1.4.3.2.1.22.1.5.3
Combine and .
Step 1.4.3.2.1.22.1.5.4
Cancel the common factor of .
Tap for more steps...
Step 1.4.3.2.1.22.1.5.4.1
Cancel the common factor.
Step 1.4.3.2.1.22.1.5.4.2
Rewrite the expression.
Step 1.4.3.2.1.22.1.5.5
Evaluate the exponent.
Step 1.4.3.2.1.22.2
Add and .
Step 1.4.3.2.1.22.3
Subtract from .
Step 1.4.3.2.1.23
Cancel the common factor of and .
Tap for more steps...
Step 1.4.3.2.1.23.1
Factor out of .
Step 1.4.3.2.1.23.2
Factor out of .
Step 1.4.3.2.1.23.3
Factor out of .
Step 1.4.3.2.1.23.4
Cancel the common factors.
Tap for more steps...
Step 1.4.3.2.1.23.4.1
Factor out of .
Step 1.4.3.2.1.23.4.2
Cancel the common factor.
Step 1.4.3.2.1.23.4.3
Rewrite the expression.
Step 1.4.3.2.1.24
Combine and .
Step 1.4.3.2.1.25
Combine and .
Step 1.4.3.2.2
Find the common denominator.
Tap for more steps...
Step 1.4.3.2.2.1
Multiply by .
Step 1.4.3.2.2.2
Multiply by .
Step 1.4.3.2.2.3
Multiply by .
Step 1.4.3.2.2.4
Multiply by .
Step 1.4.3.2.2.5
Multiply by .
Step 1.4.3.2.2.6
Multiply by .
Step 1.4.3.2.2.7
Write as a fraction with denominator .
Step 1.4.3.2.2.8
Multiply by .
Step 1.4.3.2.2.9
Multiply by .
Step 1.4.3.2.2.10
Reorder the factors of .
Step 1.4.3.2.2.11
Multiply by .
Step 1.4.3.2.2.12
Reorder the factors of .
Step 1.4.3.2.2.13
Multiply by .
Step 1.4.3.2.2.14
Multiply by .
Step 1.4.3.2.3
Combine the numerators over the common denominator.
Step 1.4.3.2.4
Simplify each term.
Tap for more steps...
Step 1.4.3.2.4.1
Apply the distributive property.
Step 1.4.3.2.4.2
Multiply by .
Step 1.4.3.2.4.3
Multiply by .
Step 1.4.3.2.4.4
Apply the distributive property.
Step 1.4.3.2.4.5
Multiply by .
Step 1.4.3.2.4.6
Multiply by .
Step 1.4.3.2.4.7
Apply the distributive property.
Step 1.4.3.2.4.8
Multiply by .
Step 1.4.3.2.4.9
Multiply by .
Step 1.4.3.2.4.10
Apply the distributive property.
Step 1.4.3.2.4.11
Multiply by .
Step 1.4.3.2.4.12
Multiply by .
Step 1.4.3.2.4.13
Apply the distributive property.
Step 1.4.3.2.4.14
Multiply by .
Step 1.4.3.2.4.15
Multiply by .
Step 1.4.3.2.4.16
Apply the distributive property.
Step 1.4.3.2.4.17
Multiply by .
Step 1.4.3.2.4.18
Multiply by .
Step 1.4.3.2.4.19
Multiply by .
Step 1.4.3.2.5
Simplify terms.
Tap for more steps...
Step 1.4.3.2.5.1
Subtract from .
Step 1.4.3.2.5.2
Simplify by adding and subtracting.
Tap for more steps...
Step 1.4.3.2.5.2.1
Add and .
Step 1.4.3.2.5.2.2
Add and .
Step 1.4.3.2.5.2.3
Subtract from .
Step 1.4.3.2.5.3
Add and .
Step 1.4.3.2.5.4
Subtract from .
Step 1.4.3.2.5.5
Subtract from .
Step 1.4.3.2.5.6
Rewrite as .
Step 1.4.3.2.5.7
Factor out of .
Step 1.4.3.2.5.8
Factor out of .
Step 1.4.3.2.5.9
Move the negative in front of the fraction.
Step 1.4.4
List all of the points.
Step 2
Use the first derivative test to determine which points can be maxima or minima.
Tap for more steps...
Step 2.1
Split into separate intervals around the values that make the first derivative or undefined.
Step 2.2
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 2.2.1
Replace the variable with in the expression.
Step 2.2.2
Simplify the result.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Raise to the power of .
Step 2.2.2.1.2
Multiply by .
Step 2.2.2.1.3
Raise to the power of .
Step 2.2.2.1.4
Multiply by .
Step 2.2.2.1.5
Multiply by .
Step 2.2.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.2.2.2.1
Subtract from .
Step 2.2.2.2.2
Subtract from .
Step 2.2.2.2.3
Add and .
Step 2.2.2.3
The final answer is .
Step 2.3
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 2.3.1
Replace the variable with in the expression.
Step 2.3.2
Simplify the result.
Tap for more steps...
Step 2.3.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.1.1
Raising to any positive power yields .
Step 2.3.2.1.2
Multiply by .
Step 2.3.2.1.3
Raising to any positive power yields .
Step 2.3.2.1.4
Multiply by .
Step 2.3.2.1.5
Multiply by .
Step 2.3.2.2
Simplify by adding numbers.
Tap for more steps...
Step 2.3.2.2.1
Add and .
Step 2.3.2.2.2
Add and .
Step 2.3.2.2.3
Add and .
Step 2.3.2.3
The final answer is .
Step 2.4
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 2.4.1
Replace the variable with in the expression.
Step 2.4.2
Simplify the result.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Raise to the power of .
Step 2.4.2.1.2
Multiply by .
Step 2.4.2.1.3
Raise to the power of .
Step 2.4.2.1.4
Multiply by .
Step 2.4.2.1.5
Multiply by .
Step 2.4.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.4.2.2.1
Subtract from .
Step 2.4.2.2.2
Add and .
Step 2.4.2.2.3
Add and .
Step 2.4.2.3
The final answer is .
Step 2.5
Substitute any number, such as , from the interval in the first derivative to check if the result is negative or positive.
Tap for more steps...
Step 2.5.1
Replace the variable with in the expression.
Step 2.5.2
Simplify the result.
Tap for more steps...
Step 2.5.2.1
Simplify each term.
Tap for more steps...
Step 2.5.2.1.1
Raise to the power of .
Step 2.5.2.1.2
Multiply by .
Step 2.5.2.1.3
Raise to the power of .
Step 2.5.2.1.4
Multiply by .
Step 2.5.2.1.5
Multiply by .
Step 2.5.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.5.2.2.1
Subtract from .
Step 2.5.2.2.2
Add and .
Step 2.5.2.2.3
Add and .
Step 2.5.2.3
The final answer is .
Step 2.6
Since the first derivative changed signs from negative to positive around , then is a local minimum.
is a local minimum
Step 2.7
Since the first derivative changed signs from positive to negative around , then is a local maximum.
is a local maximum
Step 2.8
Since the first derivative changed signs from negative to positive around , then is a local minimum.
is a local minimum
Step 2.9
These are the local extrema for .
is a local minimum
is a local maximum
is a local minimum
is a local minimum
is a local maximum
is a local minimum
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
No absolute maximum
Absolute Minimum:
Step 4