Algebra Examples

Divide Using Long Polynomial Division (-2x^12+3x^6-x^5+15x)/(x^5)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+++++-++++++-+++++
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
-
+++++-++++++-+++++
Step 3
Multiply the new quotient term by the divisor.
-
+++++-++++++-+++++
-+++++
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
-
+++++-++++++-+++++
+-----
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
+++++-++++++-+++++
+-----
Step 6
Pull the next terms from the original dividend down into the current dividend.
-
+++++-++++++-+++++
+-----
+-++++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
-++++++
+++++-++++++-+++++
+-----
+-++++
Step 8
Multiply the new quotient term by the divisor.
-++++++
+++++-++++++-+++++
+-----
+-++++
++++++
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
-++++++
+++++-++++++-+++++
+-----
+-++++
------
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++++++
+++++-++++++-+++++
+-----
+-++++
------
-++++
Step 11
Pull the next terms from the original dividend down into the current dividend.
-++++++
+++++-++++++-+++++
+-----
+-++++
------
-+++++
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
-++++++-
+++++-++++++-+++++
+-----
+-++++
------
-+++++
Step 13
Multiply the new quotient term by the divisor.
-++++++-
+++++-++++++-+++++
+-----
+-++++
------
-+++++
-+++++
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
-++++++-
+++++-++++++-+++++
+-----
+-++++
------
-+++++
+-----
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++++++-
+++++-++++++-+++++
+-----
+-++++
------
-+++++
+-----
++
Step 16
The final answer is the quotient plus the remainder over the divisor.