Enter a problem...
Algebra Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
Differentiate using the Product Rule which states that is where and .
Step 2.2
Differentiate using the chain rule, which states that is where and .
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
The derivative of with respect to is .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Differentiate.
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Simplify the expression.
Step 2.3.3.1
Multiply by .
Step 2.3.3.2
Move to the left of .
Step 2.4
Rewrite as .
Step 3
Step 3.1
Differentiate using the Product Rule which states that is where and .
Step 3.2
Differentiate using the chain rule, which states that is where and .
Step 3.2.1
To apply the Chain Rule, set as .
Step 3.2.2
The derivative of with respect to is .
Step 3.2.3
Replace all occurrences of with .
Step 3.3
Differentiate using the Constant Multiple Rule.
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Multiply by .
Step 3.4
Rewrite as .
Step 3.5
Differentiate using the Power Rule which states that is where .
Step 3.6
Simplify the expression.
Step 3.6.1
Multiply by .
Step 3.6.2
Reorder terms.
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Use the double-angle identity to transform to .
Step 5.2
Use the double-angle identity to transform to .
Step 5.3
Subtract from both sides of the equation.
Step 5.4
Add to both sides of the equation.
Step 5.5
Simplify the left side.
Step 5.5.1
Simplify .
Step 5.5.1.1
Simplify each term.
Step 5.5.1.1.1
Apply the sine double-angle identity.
Step 5.5.1.1.2
Apply the sine double-angle identity.
Step 5.5.1.1.3
Multiply by .
Step 5.5.1.2
Reorder factors in .
Step 5.6
Simplify the right side.
Step 5.6.1
Simplify each term.
Step 5.6.1.1
Apply the distributive property.
Step 5.6.1.2
Multiply by .
Step 5.6.1.3
Rewrite using the commutative property of multiplication.
Step 5.6.1.4
Multiply by .
Step 5.7
Solve the equation for .
Step 5.7.1
Simplify the left side.
Step 5.7.1.1
Simplify .
Step 5.7.1.1.1
Simplify each term.
Step 5.7.1.1.1.1
Add parentheses.
Step 5.7.1.1.1.2
Reorder and .
Step 5.7.1.1.1.3
Reorder and .
Step 5.7.1.1.1.4
Apply the sine double-angle identity.
Step 5.7.1.1.2
Reorder factors in .
Step 5.7.2
Simplify the right side.
Step 5.7.2.1
Apply the cosine double-angle identity.
Step 5.7.3
Use the double-angle identity to transform to .
Step 5.7.4
Simplify the left side.
Step 5.7.4.1
Simplify each term.
Step 5.7.4.1.1
Apply the sine double-angle identity.
Step 5.7.4.1.2
Rewrite using the commutative property of multiplication.
Step 5.7.5
Solve the equation for .
Step 5.7.5.1
Simplify the left side.
Step 5.7.5.1.1
Simplify .
Step 5.7.5.1.1.1
Simplify each term.
Step 5.7.5.1.1.1.1
Add parentheses.
Step 5.7.5.1.1.1.2
Reorder and .
Step 5.7.5.1.1.1.3
Reorder and .
Step 5.7.5.1.1.1.4
Apply the sine double-angle identity.
Step 5.7.5.1.1.2
Reorder factors in .
Step 5.7.5.2
Simplify the right side.
Step 5.7.5.2.1
Apply the cosine double-angle identity.
Step 5.7.5.3
Use the double-angle identity to transform to .
Step 5.7.5.4
Simplify the left side.
Step 5.7.5.4.1
Simplify each term.
Step 5.7.5.4.1.1
Apply the sine double-angle identity.
Step 5.7.5.4.1.2
Rewrite using the commutative property of multiplication.
Step 5.7.5.5
Solve the equation for .
Step 5.7.5.5.1
Simplify the left side.
Step 5.7.5.5.1.1
Simplify .
Step 5.7.5.5.1.1.1
Simplify each term.
Step 5.7.5.5.1.1.1.1
Add parentheses.
Step 5.7.5.5.1.1.1.2
Reorder and .
Step 5.7.5.5.1.1.1.3
Reorder and .
Step 5.7.5.5.1.1.1.4
Apply the sine double-angle identity.
Step 5.7.5.5.1.1.2
Reorder factors in .
Step 5.7.5.5.2
Simplify the right side.
Step 5.7.5.5.2.1
Apply the cosine double-angle identity.
Step 5.7.5.5.3
Use the double-angle identity to transform to .
Step 5.7.5.5.4
Simplify the left side.
Step 5.7.5.5.4.1
Simplify each term.
Step 5.7.5.5.4.1.1
Apply the sine double-angle identity.
Step 5.7.5.5.4.1.2
Rewrite using the commutative property of multiplication.
Step 5.7.5.5.5
Solve the equation for .
Step 5.7.5.5.5.1
Simplify the left side.
Step 5.7.5.5.5.1.1
Simplify .
Step 5.7.5.5.5.1.1.1
Simplify each term.
Step 5.7.5.5.5.1.1.1.1
Add parentheses.
Step 5.7.5.5.5.1.1.1.2
Reorder and .
Step 5.7.5.5.5.1.1.1.3
Reorder and .
Step 5.7.5.5.5.1.1.1.4
Apply the sine double-angle identity.
Step 5.7.5.5.5.1.1.2
Reorder factors in .
Step 5.7.5.5.5.2
Simplify the right side.
Step 5.7.5.5.5.2.1
Apply the cosine double-angle identity.
Step 5.7.5.5.5.3
Use the double-angle identity to transform to .
Step 5.7.5.5.5.4
Simplify the left side.
Step 5.7.5.5.5.4.1
Simplify each term.
Step 5.7.5.5.5.4.1.1
Apply the sine double-angle identity.
Step 5.7.5.5.5.4.1.2
Rewrite using the commutative property of multiplication.
Step 5.7.5.5.5.5
Solve the equation for .
Step 5.7.5.5.5.5.1
Simplify the left side.
Step 5.7.5.5.5.5.1.1
Simplify .
Step 5.7.5.5.5.5.1.1.1
Simplify each term.
Step 5.7.5.5.5.5.1.1.1.1
Add parentheses.
Step 5.7.5.5.5.5.1.1.1.2
Reorder and .
Step 5.7.5.5.5.5.1.1.1.3
Reorder and .
Step 5.7.5.5.5.5.1.1.1.4
Apply the sine double-angle identity.
Step 5.7.5.5.5.5.1.1.2
Reorder factors in .
Step 5.7.5.5.5.5.2
Simplify the right side.
Step 5.7.5.5.5.5.2.1
Apply the cosine double-angle identity.
Step 5.7.5.5.5.5.3
Factor out of .
Step 5.7.5.5.5.5.3.1
Factor out of .
Step 5.7.5.5.5.5.3.2
Factor out of .
Step 5.7.5.5.5.5.3.3
Factor out of .
Step 5.7.5.5.5.5.4
Divide each term in by and simplify.
Step 5.7.5.5.5.5.4.1
Divide each term in by .
Step 5.7.5.5.5.5.4.2
Simplify the left side.
Step 5.7.5.5.5.5.4.2.1
Cancel the common factor of .
Step 5.7.5.5.5.5.4.2.1.1
Cancel the common factor.
Step 5.7.5.5.5.5.4.2.1.2
Divide by .
Step 5.7.5.5.5.5.4.3
Simplify the right side.
Step 5.7.5.5.5.5.4.3.1
Move the negative in front of the fraction.
Step 5.7.5.5.5.5.4.3.2
Combine into one fraction.
Step 5.7.5.5.5.5.4.3.2.1
Combine the numerators over the common denominator.
Step 5.7.5.5.5.5.4.3.2.2
Combine the numerators over the common denominator.
Step 6
Replace with .