Enter a problem...
Algebra Examples
Step 1
Step 1.1
Factor the fraction.
Step 1.1.1
Rewrite as .
Step 1.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.1.3
Factor out of .
Step 1.1.3.1
Factor out of .
Step 1.1.3.2
Factor out of .
Step 1.1.3.3
Raise to the power of .
Step 1.1.3.4
Factor out of .
Step 1.1.3.5
Factor out of .
Step 1.1.3.6
Factor out of .
Step 1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor is 2nd order, terms are required in the numerator. The number of terms required in the numerator is always equal to the order of the factor in the denominator.
Step 1.3
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is .
Step 1.4
Reduce the expression by cancelling the common factors.
Step 1.4.1
Cancel the common factor of .
Step 1.4.1.1
Cancel the common factor.
Step 1.4.1.2
Rewrite the expression.
Step 1.4.2
Cancel the common factor of .
Step 1.4.2.1
Cancel the common factor.
Step 1.4.2.2
Divide by .
Step 1.5
Expand using the FOIL Method.
Step 1.5.1
Apply the distributive property.
Step 1.5.2
Apply the distributive property.
Step 1.5.3
Apply the distributive property.
Step 1.6
Simplify and combine like terms.
Step 1.6.1
Simplify each term.
Step 1.6.1.1
Multiply by .
Step 1.6.1.2
Move to the left of .
Step 1.6.1.3
Rewrite as .
Step 1.6.1.4
Multiply by .
Step 1.6.1.5
Multiply by .
Step 1.6.2
Add and .
Step 1.6.3
Add and .
Step 1.7
Simplify each term.
Step 1.7.1
Cancel the common factor of .
Step 1.7.1.1
Cancel the common factor.
Step 1.7.1.2
Divide by .
Step 1.7.2
Apply the distributive property.
Step 1.7.3
Multiply by .
Step 1.7.4
Cancel the common factor of .
Step 1.7.4.1
Cancel the common factor.
Step 1.7.4.2
Divide by .
Step 1.7.5
Apply the distributive property.
Step 1.7.6
Multiply by by adding the exponents.
Step 1.7.6.1
Move .
Step 1.7.6.2
Multiply by .
Step 1.8
Simplify the expression.
Step 1.8.1
Reorder and .
Step 1.8.2
Move .
Step 1.8.3
Move .
Step 2
Step 2.1
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.2
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.3
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing . For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.4
Set up the system of equations to find the coefficients of the partial fractions.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Replace all occurrences of with in each equation.
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Remove parentheses.
Step 3.2.3
Replace all occurrences of in with .
Step 3.2.4
Simplify the right side.
Step 3.2.4.1
Remove parentheses.
Step 3.3
Solve for in .
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Add to both sides of the equation.
Step 3.4
Replace all occurrences of with in each equation.
Step 3.4.1
Rewrite the equation as .
Step 3.4.2
Move all terms not containing to the right side of the equation.
Step 3.4.2.1
Add to both sides of the equation.
Step 3.4.2.2
Add and .
Step 3.5
List all of the solutions.
Step 4
Replace each of the partial fraction coefficients in with the values found for , , and .
Step 5
Multiply by .