Algebra Examples

Divide Using Long Polynomial Division (5x^10-9x^8-9x^5+7x)/(x^5)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
++++++-++-+++++
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
++++++-++-+++++
Step 3
Multiply the new quotient term by the divisor.
++++++-++-+++++
++++++
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
++++++-++-+++++
------
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++++++-++-+++++
------
-++-
Step 6
Pull the next terms from the original dividend down into the current dividend.
++++++-++-+++++
------
-++-++++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
+-
++++++-++-+++++
------
-++-++++
Step 8
Multiply the new quotient term by the divisor.
+-
++++++-++-+++++
------
-++-++++
-+++++
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
+-
++++++-++-+++++
------
-++-++++
+-----
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-
++++++-++-+++++
------
-++-++++
+-----
-++
Step 11
Pull the next terms from the original dividend down into the current dividend.
+-
++++++-++-+++++
------
-++-++++
+-----
-+++++
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
+-++-
++++++-++-+++++
------
-++-++++
+-----
-+++++
Step 13
Multiply the new quotient term by the divisor.
+-++-
++++++-++-+++++
------
-++-++++
+-----
-+++++
-+++++
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
+-++-
++++++-++-+++++
------
-++-++++
+-----
-+++++
+-----
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-++-
++++++-++-+++++
------
-++-++++
+-----
-+++++
+-----
++
Step 16
The final answer is the quotient plus the remainder over the divisor.