Enter a problem...
Algebra Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
Differentiate using the Quotient Rule which states that is where and .
Step 2.2
Differentiate using the chain rule, which states that is where and .
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Move to the left of .
Step 2.4
Rewrite as .
Step 2.5
By the Sum Rule, the derivative of with respect to is .
Step 2.6
Rewrite as .
Step 2.7
Differentiate using the Power Rule which states that is where .
Step 2.8
Simplify.
Step 2.8.1
Apply the distributive property.
Step 2.8.2
Apply the distributive property.
Step 2.8.3
Apply the distributive property.
Step 2.8.4
Apply the distributive property.
Step 2.8.5
Simplify the numerator.
Step 2.8.5.1
Simplify each term.
Step 2.8.5.1.1
Multiply by by adding the exponents.
Step 2.8.5.1.1.1
Move .
Step 2.8.5.1.1.2
Multiply by .
Step 2.8.5.1.2
Multiply by .
Step 2.8.5.2
Subtract from .
Step 2.8.5.3
Multiply by .
Step 2.8.6
Reorder terms.
Step 2.8.7
Factor out of .
Step 2.8.7.1
Factor out of .
Step 2.8.7.2
Factor out of .
Step 2.8.7.3
Factor out of .
Step 2.8.7.4
Factor out of .
Step 2.8.7.5
Factor out of .
Step 2.8.8
Factor out of .
Step 2.8.9
Factor out of .
Step 2.8.10
Factor out of .
Step 2.8.11
Factor out of .
Step 2.8.12
Factor out of .
Step 2.8.13
Rewrite as .
Step 2.8.14
Move the negative in front of the fraction.
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Differentiate using the Power Rule which states that is where .
Step 3.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4
Add and .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Divide each term in by and simplify.
Step 5.1.1
Divide each term in by .
Step 5.1.2
Simplify the left side.
Step 5.1.2.1
Dividing two negative values results in a positive value.
Step 5.1.2.2
Divide by .
Step 5.1.3
Simplify the right side.
Step 5.1.3.1
Move the negative one from the denominator of .
Step 5.1.3.2
Rewrite as .
Step 5.1.3.3
Multiply by .
Step 5.2
Multiply both sides by .
Step 5.3
Simplify the left side.
Step 5.3.1
Simplify .
Step 5.3.1.1
Cancel the common factor of .
Step 5.3.1.1.1
Cancel the common factor.
Step 5.3.1.1.2
Rewrite the expression.
Step 5.3.1.2
Apply the distributive property.
Step 5.3.1.3
Simplify.
Step 5.3.1.3.1
Multiply by .
Step 5.3.1.3.2
Rewrite using the commutative property of multiplication.
Step 5.3.1.3.3
Rewrite using the commutative property of multiplication.
Step 5.3.1.4
Multiply by by adding the exponents.
Step 5.3.1.4.1
Move .
Step 5.3.1.4.2
Multiply by .
Step 5.3.1.5
Move .
Step 5.3.1.6
Move .
Step 5.3.1.7
Move .
Step 5.3.1.8
Move .
Step 5.3.1.9
Reorder and .
Step 5.4
Solve for .
Step 5.4.1
Simplify .
Step 5.4.1.1
Rewrite.
Step 5.4.1.2
Rewrite as .
Step 5.4.1.3
Expand using the FOIL Method.
Step 5.4.1.3.1
Apply the distributive property.
Step 5.4.1.3.2
Apply the distributive property.
Step 5.4.1.3.3
Apply the distributive property.
Step 5.4.1.4
Simplify and combine like terms.
Step 5.4.1.4.1
Simplify each term.
Step 5.4.1.4.1.1
Multiply by .
Step 5.4.1.4.1.2
Multiply by .
Step 5.4.1.4.2
Add and .
Step 5.4.1.4.2.1
Reorder and .
Step 5.4.1.4.2.2
Add and .
Step 5.4.1.5
Apply the distributive property.
Step 5.4.1.6
Simplify.
Step 5.4.1.6.1
Multiply by by adding the exponents.
Step 5.4.1.6.1.1
Move .
Step 5.4.1.6.1.2
Multiply by .
Step 5.4.1.6.2
Multiply by by adding the exponents.
Step 5.4.1.6.2.1
Move .
Step 5.4.1.6.2.2
Multiply by .
Step 5.4.1.6.2.2.1
Raise to the power of .
Step 5.4.1.6.2.2.2
Use the power rule to combine exponents.
Step 5.4.1.6.2.3
Add and .
Step 5.4.1.7
Simplify each term.
Step 5.4.1.7.1
Rewrite using the commutative property of multiplication.
Step 5.4.1.7.2
Multiply by .
Step 5.4.2
Subtract from both sides of the equation.
Step 5.4.3
Factor out of .
Step 5.4.3.1
Factor out of .
Step 5.4.3.2
Factor out of .
Step 5.4.3.3
Factor out of .
Step 5.4.4
Rewrite as .
Step 5.4.5
Divide each term in by and simplify.
Step 5.4.5.1
Divide each term in by .
Step 5.4.5.2
Simplify the left side.
Step 5.4.5.2.1
Cancel the common factor of .
Step 5.4.5.2.1.1
Cancel the common factor.
Step 5.4.5.2.1.2
Rewrite the expression.
Step 5.4.5.2.2
Cancel the common factor of .
Step 5.4.5.2.2.1
Cancel the common factor.
Step 5.4.5.2.2.2
Divide by .
Step 5.4.5.3
Simplify the right side.
Step 5.4.5.3.1
Simplify each term.
Step 5.4.5.3.1.1
Cancel the common factor of and .
Step 5.4.5.3.1.1.1
Factor out of .
Step 5.4.5.3.1.1.2
Cancel the common factors.
Step 5.4.5.3.1.1.2.1
Cancel the common factor.
Step 5.4.5.3.1.1.2.2
Rewrite the expression.
Step 5.4.5.3.1.2
Move the negative in front of the fraction.
Step 5.4.5.3.1.3
Cancel the common factor of .
Step 5.4.5.3.1.3.1
Cancel the common factor.
Step 5.4.5.3.1.3.2
Rewrite the expression.
Step 5.4.5.3.1.4
Move the negative in front of the fraction.
Step 5.4.5.3.1.5
Move the negative in front of the fraction.
Step 5.4.5.3.1.6
Cancel the common factor of and .
Step 5.4.5.3.1.6.1
Factor out of .
Step 5.4.5.3.1.6.2
Cancel the common factors.
Step 5.4.5.3.1.6.2.1
Cancel the common factor.
Step 5.4.5.3.1.6.2.2
Rewrite the expression.
Step 5.4.5.3.1.7
Move the negative in front of the fraction.
Step 5.4.5.3.2
Combine the numerators over the common denominator.
Step 5.4.5.3.3
Simplify each term.
Step 5.4.5.3.3.1
Simplify the numerator.
Step 5.4.5.3.3.1.1
Factor out of .
Step 5.4.5.3.3.1.1.1
Factor out of .
Step 5.4.5.3.3.1.1.2
Factor out of .
Step 5.4.5.3.3.1.1.3
Factor out of .
Step 5.4.5.3.3.1.2
Rewrite as .
Step 5.4.5.3.3.2
Cancel the common factor of and .
Step 5.4.5.3.3.2.1
Reorder terms.
Step 5.4.5.3.3.2.2
Cancel the common factor.
Step 5.4.5.3.3.2.3
Divide by .
Step 5.4.5.3.4
To write as a fraction with a common denominator, multiply by .
Step 5.4.5.3.5
Combine the numerators over the common denominator.
Step 5.4.5.3.6
Simplify the numerator.
Step 5.4.5.3.6.1
Apply the distributive property.
Step 5.4.5.3.6.2
Rewrite using the commutative property of multiplication.
Step 5.4.5.3.6.3
Rewrite using the commutative property of multiplication.
Step 5.4.5.3.6.4
Simplify each term.
Step 5.4.5.3.6.4.1
Multiply by by adding the exponents.
Step 5.4.5.3.6.4.1.1
Move .
Step 5.4.5.3.6.4.1.2
Multiply by .
Step 5.4.5.3.6.4.2
Multiply by .
Step 5.4.5.3.6.4.3
Multiply by .
Step 5.4.5.3.7
To write as a fraction with a common denominator, multiply by .
Step 5.4.5.3.8
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 5.4.5.3.8.1
Multiply by .
Step 5.4.5.3.8.2
Reorder the factors of .
Step 5.4.5.3.9
Combine the numerators over the common denominator.
Step 5.4.5.3.10
Simplify the numerator.
Step 5.4.5.3.10.1
Apply the distributive property.
Step 5.4.5.3.10.2
Simplify.
Step 5.4.5.3.10.2.1
Multiply by by adding the exponents.
Step 5.4.5.3.10.2.1.1
Move .
Step 5.4.5.3.10.2.1.2
Multiply by .
Step 5.4.5.3.10.2.2
Multiply by by adding the exponents.
Step 5.4.5.3.10.2.2.1
Move .
Step 5.4.5.3.10.2.2.2
Multiply by .
Step 5.4.5.3.11
Simplify terms.
Step 5.4.5.3.11.1
Factor out of .
Step 5.4.5.3.11.2
Factor out of .
Step 5.4.5.3.11.3
Factor out of .
Step 5.4.5.3.11.4
Factor out of .
Step 5.4.5.3.11.5
Factor out of .
Step 5.4.5.3.11.6
Factor out of .
Step 5.4.5.3.11.7
Factor out of .
Step 5.4.5.3.11.8
Rewrite as .
Step 5.4.5.3.11.9
Factor out of .
Step 5.4.5.3.11.10
Factor out of .
Step 5.4.5.3.11.11
Factor out of .
Step 5.4.5.3.11.12
Rewrite as .
Step 5.4.5.3.11.13
Cancel the common factor.
Step 5.4.5.3.11.14
Rewrite the expression.
Step 6
Replace with .