Algebra Examples

Solve by Factoring 18x^3-15x^2-9x=0
Step 1
Factor out of .
Tap for more steps...
Step 1.1
Factor out of .
Step 1.2
Factor out of .
Step 1.3
Factor out of .
Step 1.4
Factor out of .
Step 1.5
Factor out of .
Step 2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3
Set equal to .
Step 4
Set equal to and solve for .
Tap for more steps...
Step 4.1
Set equal to .
Step 4.2
Solve for .
Tap for more steps...
Step 4.2.1
Use the quadratic formula to find the solutions.
Step 4.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 4.2.3
Simplify.
Tap for more steps...
Step 4.2.3.1
Simplify the numerator.
Tap for more steps...
Step 4.2.3.1.1
Raise to the power of .
Step 4.2.3.1.2
Multiply .
Tap for more steps...
Step 4.2.3.1.2.1
Multiply by .
Step 4.2.3.1.2.2
Multiply by .
Step 4.2.3.1.3
Add and .
Step 4.2.3.2
Multiply by .
Step 4.2.4
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 4.2.4.1
Simplify the numerator.
Tap for more steps...
Step 4.2.4.1.1
Raise to the power of .
Step 4.2.4.1.2
Multiply .
Tap for more steps...
Step 4.2.4.1.2.1
Multiply by .
Step 4.2.4.1.2.2
Multiply by .
Step 4.2.4.1.3
Add and .
Step 4.2.4.2
Multiply by .
Step 4.2.4.3
Change the to .
Step 4.2.5
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 4.2.5.1
Simplify the numerator.
Tap for more steps...
Step 4.2.5.1.1
Raise to the power of .
Step 4.2.5.1.2
Multiply .
Tap for more steps...
Step 4.2.5.1.2.1
Multiply by .
Step 4.2.5.1.2.2
Multiply by .
Step 4.2.5.1.3
Add and .
Step 4.2.5.2
Multiply by .
Step 4.2.5.3
Change the to .
Step 4.2.6
The final answer is the combination of both solutions.
Step 5
The final solution is all the values that make true.
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form: