Algebra Examples

Find the Inverse - cube root of 3x-6+12
Step 1
Interchange the variables.
Step 2
Solve for .
Tap for more steps...
Step 2.1
Rewrite the equation as .
Step 2.2
Subtract from both sides of the equation.
Step 2.3
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 2.4
Simplify each side of the equation.
Tap for more steps...
Step 2.4.1
Use to rewrite as .
Step 2.4.2
Simplify the left side.
Tap for more steps...
Step 2.4.2.1
Simplify .
Tap for more steps...
Step 2.4.2.1.1
Apply the product rule to .
Step 2.4.2.1.2
Raise to the power of .
Step 2.4.2.1.3
Multiply the exponents in .
Tap for more steps...
Step 2.4.2.1.3.1
Apply the power rule and multiply exponents, .
Step 2.4.2.1.3.2
Cancel the common factor of .
Tap for more steps...
Step 2.4.2.1.3.2.1
Cancel the common factor.
Step 2.4.2.1.3.2.2
Rewrite the expression.
Step 2.4.2.1.4
Simplify.
Step 2.4.2.1.5
Apply the distributive property.
Step 2.4.2.1.6
Multiply.
Tap for more steps...
Step 2.4.2.1.6.1
Multiply by .
Step 2.4.2.1.6.2
Multiply by .
Step 2.4.3
Simplify the right side.
Tap for more steps...
Step 2.4.3.1
Simplify .
Tap for more steps...
Step 2.4.3.1.1
Use the Binomial Theorem.
Step 2.4.3.1.2
Simplify each term.
Tap for more steps...
Step 2.4.3.1.2.1
Multiply by .
Step 2.4.3.1.2.2
Raise to the power of .
Step 2.4.3.1.2.3
Multiply by .
Step 2.4.3.1.2.4
Raise to the power of .
Step 2.5
Solve for .
Tap for more steps...
Step 2.5.1
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.5.1.1
Subtract from both sides of the equation.
Step 2.5.1.2
Subtract from .
Step 2.5.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.2.1
Divide each term in by .
Step 2.5.2.2
Simplify the left side.
Tap for more steps...
Step 2.5.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.5.2.2.1.1
Cancel the common factor.
Step 2.5.2.2.1.2
Divide by .
Step 2.5.2.3
Simplify the right side.
Tap for more steps...
Step 2.5.2.3.1
Simplify each term.
Tap for more steps...
Step 2.5.2.3.1.1
Move the negative in front of the fraction.
Step 2.5.2.3.1.2
Cancel the common factor of and .
Tap for more steps...
Step 2.5.2.3.1.2.1
Factor out of .
Step 2.5.2.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 2.5.2.3.1.2.2.1
Factor out of .
Step 2.5.2.3.1.2.2.2
Cancel the common factor.
Step 2.5.2.3.1.2.2.3
Rewrite the expression.
Step 2.5.2.3.1.2.2.4
Divide by .
Step 2.5.2.3.1.3
Cancel the common factor of and .
Tap for more steps...
Step 2.5.2.3.1.3.1
Factor out of .
Step 2.5.2.3.1.3.2
Move the negative one from the denominator of .
Step 2.5.2.3.1.4
Rewrite as .
Step 2.5.2.3.1.5
Multiply by .
Step 2.5.2.3.1.6
Divide by .
Step 3
Replace with to show the final answer.
Step 4
Verify if is the inverse of .
Tap for more steps...
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Tap for more steps...
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify each term.
Tap for more steps...
Step 4.2.3.1
Factor out of .
Tap for more steps...
Step 4.2.3.1.1
Factor out of .
Step 4.2.3.1.2
Factor out of .
Step 4.2.3.1.3
Factor out of .
Step 4.2.3.2
Simplify .
Tap for more steps...
Step 4.2.3.2.1
Use the Binomial Theorem.
Step 4.2.3.2.2
Simplify each term.
Tap for more steps...
Step 4.2.3.2.2.1
Apply the product rule to .
Step 4.2.3.2.2.2
Raise to the power of .
Step 4.2.3.2.2.3
Rewrite as .
Tap for more steps...
Step 4.2.3.2.2.3.1
Use to rewrite as .
Step 4.2.3.2.2.3.2
Apply the power rule and multiply exponents, .
Step 4.2.3.2.2.3.3
Combine and .
Step 4.2.3.2.2.3.4
Cancel the common factor of .
Tap for more steps...
Step 4.2.3.2.2.3.4.1
Cancel the common factor.
Step 4.2.3.2.2.3.4.2
Rewrite the expression.
Step 4.2.3.2.2.3.5
Simplify.
Step 4.2.3.2.2.4
Apply the distributive property.
Step 4.2.3.2.2.5
Multiply by .
Step 4.2.3.2.2.6
Apply the distributive property.
Step 4.2.3.2.2.7
Multiply by .
Step 4.2.3.2.2.8
Multiply by .
Step 4.2.3.2.2.9
Apply the product rule to .
Step 4.2.3.2.2.10
Raise to the power of .
Step 4.2.3.2.2.11
Multiply by .
Step 4.2.3.2.2.12
Rewrite as .
Step 4.2.3.2.2.13
Apply the product rule to .
Step 4.2.3.2.2.14
Raise to the power of .
Step 4.2.3.2.2.15
Multiply by .
Step 4.2.3.2.2.16
Multiply by .
Step 4.2.3.2.2.17
Raise to the power of .
Step 4.2.3.2.2.18
Multiply by .
Step 4.2.3.2.2.19
Raise to the power of .
Step 4.2.3.2.3
Add and .
Step 4.2.3.3
Cancel the common factor of and .
Tap for more steps...
Step 4.2.3.3.1
Factor out of .
Step 4.2.3.3.2
Factor out of .
Step 4.2.3.3.3
Factor out of .
Step 4.2.3.3.4
Factor out of .
Step 4.2.3.3.5
Factor out of .
Step 4.2.3.3.6
Factor out of .
Step 4.2.3.3.7
Factor out of .
Step 4.2.3.3.8
Cancel the common factors.
Tap for more steps...
Step 4.2.3.3.8.1
Factor out of .
Step 4.2.3.3.8.2
Cancel the common factor.
Step 4.2.3.3.8.3
Rewrite the expression.
Step 4.2.3.3.8.4
Divide by .
Step 4.2.3.4
Apply the distributive property.
Step 4.2.3.5
Simplify.
Tap for more steps...
Step 4.2.3.5.1
Multiply .
Tap for more steps...
Step 4.2.3.5.1.1
Multiply by .
Step 4.2.3.5.1.2
Multiply by .
Step 4.2.3.5.2
Multiply by .
Step 4.2.3.5.3
Multiply by .
Step 4.2.3.5.4
Multiply by .
Step 4.2.3.6
Factor out of .
Tap for more steps...
Step 4.2.3.6.1
Factor out of .
Step 4.2.3.6.2
Factor out of .
Step 4.2.3.6.3
Factor out of .
Step 4.2.3.7
Rewrite as .
Step 4.2.3.8
Expand using the FOIL Method.
Tap for more steps...
Step 4.2.3.8.1
Apply the distributive property.
Step 4.2.3.8.2
Apply the distributive property.
Step 4.2.3.8.3
Apply the distributive property.
Step 4.2.3.9
Simplify and combine like terms.
Tap for more steps...
Step 4.2.3.9.1
Simplify each term.
Tap for more steps...
Step 4.2.3.9.1.1
Multiply .
Tap for more steps...
Step 4.2.3.9.1.1.1
Multiply by .
Step 4.2.3.9.1.1.2
Multiply by .
Step 4.2.3.9.1.1.3
Raise to the power of .
Step 4.2.3.9.1.1.4
Raise to the power of .
Step 4.2.3.9.1.1.5
Use the power rule to combine exponents.
Step 4.2.3.9.1.1.6
Add and .
Step 4.2.3.9.1.2
Rewrite as .
Step 4.2.3.9.1.3
Apply the product rule to .
Step 4.2.3.9.1.4
Raise to the power of .
Step 4.2.3.9.1.5
Multiply by .
Step 4.2.3.9.1.6
Multiply by .
Step 4.2.3.9.1.7
Multiply by .
Step 4.2.3.9.2
Subtract from .
Step 4.2.3.10
Apply the distributive property.
Step 4.2.3.11
Simplify.
Tap for more steps...
Step 4.2.3.11.1
Multiply by .
Step 4.2.3.11.2
Multiply by .
Step 4.2.3.12
Factor out of .
Tap for more steps...
Step 4.2.3.12.1
Factor out of .
Step 4.2.3.12.2
Factor out of .
Step 4.2.3.12.3
Factor out of .
Step 4.2.3.13
Apply the distributive property.
Step 4.2.3.14
Multiply by .
Step 4.2.3.15
Multiply by .
Step 4.2.4
Simplify by adding terms.
Tap for more steps...
Step 4.2.4.1
Combine the opposite terms in .
Tap for more steps...
Step 4.2.4.1.1
Add and .
Step 4.2.4.1.2
Add and .
Step 4.2.4.1.3
Subtract from .
Step 4.2.4.1.4
Add and .
Step 4.2.4.1.5
Add and .
Step 4.2.4.1.6
Add and .
Step 4.2.4.2
Subtract from .
Step 4.2.4.3
Combine the opposite terms in .
Tap for more steps...
Step 4.2.4.3.1
Add and .
Step 4.2.4.3.2
Add and .
Step 4.3
Evaluate .
Tap for more steps...
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify each term.
Tap for more steps...
Step 4.3.3.1
Factor out of .
Tap for more steps...
Step 4.3.3.1.1
Factor out of .
Step 4.3.3.1.2
Factor out of .
Step 4.3.3.2
Subtract from .
Step 4.3.3.3
To write as a fraction with a common denominator, multiply by .
Step 4.3.3.4
Combine and .
Step 4.3.3.5
Combine the numerators over the common denominator.
Step 4.3.3.6
Simplify the numerator.
Tap for more steps...
Step 4.3.3.6.1
Factor out of .
Tap for more steps...
Step 4.3.3.6.1.1
Factor out of .
Step 4.3.3.6.1.2
Factor out of .
Step 4.3.3.6.1.3
Factor out of .
Step 4.3.3.6.2
Multiply by .
Step 4.3.3.7
To write as a fraction with a common denominator, multiply by .
Step 4.3.3.8
Combine and .
Step 4.3.3.9
Combine the numerators over the common denominator.
Step 4.3.3.10
Simplify the numerator.
Tap for more steps...
Step 4.3.3.10.1
Factor out of .
Tap for more steps...
Step 4.3.3.10.1.1
Factor out of .
Step 4.3.3.10.1.2
Factor out of .
Step 4.3.3.10.1.3
Factor out of .
Step 4.3.3.10.2
Apply the distributive property.
Step 4.3.3.10.3
Rewrite using the commutative property of multiplication.
Step 4.3.3.10.4
Move to the left of .
Step 4.3.3.10.5
Multiply by by adding the exponents.
Tap for more steps...
Step 4.3.3.10.5.1
Move .
Step 4.3.3.10.5.2
Multiply by .
Step 4.3.3.10.6
Multiply by .
Step 4.3.3.11
To write as a fraction with a common denominator, multiply by .
Step 4.3.3.12
Combine and .
Step 4.3.3.13
Combine the numerators over the common denominator.
Step 4.3.3.14
Simplify the numerator.
Tap for more steps...
Step 4.3.3.14.1
Apply the distributive property.
Step 4.3.3.14.2
Simplify.
Tap for more steps...
Step 4.3.3.14.2.1
Rewrite using the commutative property of multiplication.
Step 4.3.3.14.2.2
Rewrite using the commutative property of multiplication.
Step 4.3.3.14.2.3
Move to the left of .
Step 4.3.3.14.3
Simplify each term.
Tap for more steps...
Step 4.3.3.14.3.1
Multiply by by adding the exponents.
Tap for more steps...
Step 4.3.3.14.3.1.1
Move .
Step 4.3.3.14.3.1.2
Multiply by .
Tap for more steps...
Step 4.3.3.14.3.1.2.1
Raise to the power of .
Step 4.3.3.14.3.1.2.2
Use the power rule to combine exponents.
Step 4.3.3.14.3.1.3
Add and .
Step 4.3.3.14.3.2
Multiply by by adding the exponents.
Tap for more steps...
Step 4.3.3.14.3.2.1
Move .
Step 4.3.3.14.3.2.2
Multiply by .
Step 4.3.3.14.4
Multiply by .
Step 4.3.3.14.5
Rewrite in a factored form.
Tap for more steps...
Step 4.3.3.14.5.1
Regroup terms.
Step 4.3.3.14.5.2
Factor out of .
Tap for more steps...
Step 4.3.3.14.5.2.1
Factor out of .
Step 4.3.3.14.5.2.2
Rewrite as .
Step 4.3.3.14.5.2.3
Factor out of .
Step 4.3.3.14.5.3
Rewrite as .
Step 4.3.3.14.5.4
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 4.3.3.14.5.5
Simplify.
Tap for more steps...
Step 4.3.3.14.5.5.1
Move to the left of .
Step 4.3.3.14.5.5.2
Raise to the power of .
Step 4.3.3.14.5.6
Factor out of .
Tap for more steps...
Step 4.3.3.14.5.6.1
Factor out of .
Step 4.3.3.14.5.6.2
Factor out of .
Step 4.3.3.14.5.6.3
Factor out of .
Step 4.3.3.14.5.7
Factor out of .
Tap for more steps...
Step 4.3.3.14.5.7.1
Factor out of .
Step 4.3.3.14.5.7.2
Factor out of .
Step 4.3.3.14.5.7.3
Factor out of .
Step 4.3.3.14.5.8
Apply the distributive property.
Step 4.3.3.14.5.9
Simplify.
Tap for more steps...
Step 4.3.3.14.5.9.1
Rewrite as .
Step 4.3.3.14.5.9.2
Multiply by .
Step 4.3.3.14.5.9.3
Multiply by .
Step 4.3.3.14.5.10
Add and .
Step 4.3.3.14.5.11
Factor by grouping.
Tap for more steps...
Step 4.3.3.14.5.11.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 4.3.3.14.5.11.1.1
Factor out of .
Step 4.3.3.14.5.11.1.2
Rewrite as plus
Step 4.3.3.14.5.11.1.3
Apply the distributive property.
Step 4.3.3.14.5.11.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 4.3.3.14.5.11.2.1
Group the first two terms and the last two terms.
Step 4.3.3.14.5.11.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.3.3.14.5.11.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.3.3.14.5.12
Combine exponents.
Tap for more steps...
Step 4.3.3.14.5.12.1
Factor out of .
Step 4.3.3.14.5.12.2
Rewrite as .
Step 4.3.3.14.5.12.3
Factor out of .
Step 4.3.3.14.5.12.4
Raise to the power of .
Step 4.3.3.14.5.12.5
Raise to the power of .
Step 4.3.3.14.5.12.6
Use the power rule to combine exponents.
Step 4.3.3.14.5.12.7
Add and .
Step 4.3.3.14.5.12.8
Factor out of .
Step 4.3.3.14.5.12.9
Rewrite as .
Step 4.3.3.14.5.12.10
Factor out of .
Step 4.3.3.14.5.12.11
Rewrite as .
Step 4.3.3.14.5.12.12
Apply the product rule to .
Step 4.3.3.14.5.12.13
Raise to the power of .
Step 4.3.3.14.5.12.14
Multiply by .
Step 4.3.3.14.5.12.15
Raise to the power of .
Step 4.3.3.14.5.12.16
Use the power rule to combine exponents.
Step 4.3.3.14.5.12.17
Add and .
Step 4.3.3.15
Move the negative in front of the fraction.
Step 4.3.3.16
Combine exponents.
Tap for more steps...
Step 4.3.3.16.1
Factor out negative.
Step 4.3.3.16.2
Combine and .
Step 4.3.3.17
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.3.3.17.1
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 4.3.3.17.1.1
Cancel the common factor.
Step 4.3.3.17.1.2
Rewrite the expression.
Step 4.3.3.17.2
Divide by .
Step 4.3.3.18
Rewrite as .
Step 4.3.3.19
Pull terms out from under the radical, assuming real numbers.
Step 4.3.3.20
Apply the distributive property.
Step 4.3.3.21
Multiply by .
Step 4.3.3.22
Apply the distributive property.
Step 4.3.3.23
Multiply .
Tap for more steps...
Step 4.3.3.23.1
Multiply by .
Step 4.3.3.23.2
Multiply by .
Step 4.3.3.24
Multiply by .
Step 4.3.4
Combine the opposite terms in .
Tap for more steps...
Step 4.3.4.1
Add and .
Step 4.3.4.2
Add and .
Step 4.4
Since and , then is the inverse of .