Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Subtract from both sides of the equation.
Step 2.3
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 2.4
Simplify each side of the equation.
Step 2.4.1
Use to rewrite as .
Step 2.4.2
Simplify the left side.
Step 2.4.2.1
Simplify .
Step 2.4.2.1.1
Apply the product rule to .
Step 2.4.2.1.2
Raise to the power of .
Step 2.4.2.1.3
Multiply the exponents in .
Step 2.4.2.1.3.1
Apply the power rule and multiply exponents, .
Step 2.4.2.1.3.2
Cancel the common factor of .
Step 2.4.2.1.3.2.1
Cancel the common factor.
Step 2.4.2.1.3.2.2
Rewrite the expression.
Step 2.4.2.1.4
Simplify.
Step 2.4.2.1.5
Apply the distributive property.
Step 2.4.2.1.6
Multiply.
Step 2.4.2.1.6.1
Multiply by .
Step 2.4.2.1.6.2
Multiply by .
Step 2.4.3
Simplify the right side.
Step 2.4.3.1
Simplify .
Step 2.4.3.1.1
Use the Binomial Theorem.
Step 2.4.3.1.2
Simplify each term.
Step 2.4.3.1.2.1
Multiply by .
Step 2.4.3.1.2.2
Raise to the power of .
Step 2.4.3.1.2.3
Multiply by .
Step 2.4.3.1.2.4
Raise to the power of .
Step 2.5
Solve for .
Step 2.5.1
Move all terms not containing to the right side of the equation.
Step 2.5.1.1
Subtract from both sides of the equation.
Step 2.5.1.2
Subtract from .
Step 2.5.2
Divide each term in by and simplify.
Step 2.5.2.1
Divide each term in by .
Step 2.5.2.2
Simplify the left side.
Step 2.5.2.2.1
Cancel the common factor of .
Step 2.5.2.2.1.1
Cancel the common factor.
Step 2.5.2.2.1.2
Divide by .
Step 2.5.2.3
Simplify the right side.
Step 2.5.2.3.1
Simplify each term.
Step 2.5.2.3.1.1
Move the negative in front of the fraction.
Step 2.5.2.3.1.2
Cancel the common factor of and .
Step 2.5.2.3.1.2.1
Factor out of .
Step 2.5.2.3.1.2.2
Cancel the common factors.
Step 2.5.2.3.1.2.2.1
Factor out of .
Step 2.5.2.3.1.2.2.2
Cancel the common factor.
Step 2.5.2.3.1.2.2.3
Rewrite the expression.
Step 2.5.2.3.1.2.2.4
Divide by .
Step 2.5.2.3.1.3
Cancel the common factor of and .
Step 2.5.2.3.1.3.1
Factor out of .
Step 2.5.2.3.1.3.2
Move the negative one from the denominator of .
Step 2.5.2.3.1.4
Rewrite as .
Step 2.5.2.3.1.5
Multiply by .
Step 2.5.2.3.1.6
Divide by .
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify each term.
Step 4.2.3.1
Factor out of .
Step 4.2.3.1.1
Factor out of .
Step 4.2.3.1.2
Factor out of .
Step 4.2.3.1.3
Factor out of .
Step 4.2.3.2
Simplify .
Step 4.2.3.2.1
Use the Binomial Theorem.
Step 4.2.3.2.2
Simplify each term.
Step 4.2.3.2.2.1
Apply the product rule to .
Step 4.2.3.2.2.2
Raise to the power of .
Step 4.2.3.2.2.3
Rewrite as .
Step 4.2.3.2.2.3.1
Use to rewrite as .
Step 4.2.3.2.2.3.2
Apply the power rule and multiply exponents, .
Step 4.2.3.2.2.3.3
Combine and .
Step 4.2.3.2.2.3.4
Cancel the common factor of .
Step 4.2.3.2.2.3.4.1
Cancel the common factor.
Step 4.2.3.2.2.3.4.2
Rewrite the expression.
Step 4.2.3.2.2.3.5
Simplify.
Step 4.2.3.2.2.4
Apply the distributive property.
Step 4.2.3.2.2.5
Multiply by .
Step 4.2.3.2.2.6
Apply the distributive property.
Step 4.2.3.2.2.7
Multiply by .
Step 4.2.3.2.2.8
Multiply by .
Step 4.2.3.2.2.9
Apply the product rule to .
Step 4.2.3.2.2.10
Raise to the power of .
Step 4.2.3.2.2.11
Multiply by .
Step 4.2.3.2.2.12
Rewrite as .
Step 4.2.3.2.2.13
Apply the product rule to .
Step 4.2.3.2.2.14
Raise to the power of .
Step 4.2.3.2.2.15
Multiply by .
Step 4.2.3.2.2.16
Multiply by .
Step 4.2.3.2.2.17
Raise to the power of .
Step 4.2.3.2.2.18
Multiply by .
Step 4.2.3.2.2.19
Raise to the power of .
Step 4.2.3.2.3
Add and .
Step 4.2.3.3
Cancel the common factor of and .
Step 4.2.3.3.1
Factor out of .
Step 4.2.3.3.2
Factor out of .
Step 4.2.3.3.3
Factor out of .
Step 4.2.3.3.4
Factor out of .
Step 4.2.3.3.5
Factor out of .
Step 4.2.3.3.6
Factor out of .
Step 4.2.3.3.7
Factor out of .
Step 4.2.3.3.8
Cancel the common factors.
Step 4.2.3.3.8.1
Factor out of .
Step 4.2.3.3.8.2
Cancel the common factor.
Step 4.2.3.3.8.3
Rewrite the expression.
Step 4.2.3.3.8.4
Divide by .
Step 4.2.3.4
Apply the distributive property.
Step 4.2.3.5
Simplify.
Step 4.2.3.5.1
Multiply .
Step 4.2.3.5.1.1
Multiply by .
Step 4.2.3.5.1.2
Multiply by .
Step 4.2.3.5.2
Multiply by .
Step 4.2.3.5.3
Multiply by .
Step 4.2.3.5.4
Multiply by .
Step 4.2.3.6
Factor out of .
Step 4.2.3.6.1
Factor out of .
Step 4.2.3.6.2
Factor out of .
Step 4.2.3.6.3
Factor out of .
Step 4.2.3.7
Rewrite as .
Step 4.2.3.8
Expand using the FOIL Method.
Step 4.2.3.8.1
Apply the distributive property.
Step 4.2.3.8.2
Apply the distributive property.
Step 4.2.3.8.3
Apply the distributive property.
Step 4.2.3.9
Simplify and combine like terms.
Step 4.2.3.9.1
Simplify each term.
Step 4.2.3.9.1.1
Multiply .
Step 4.2.3.9.1.1.1
Multiply by .
Step 4.2.3.9.1.1.2
Multiply by .
Step 4.2.3.9.1.1.3
Raise to the power of .
Step 4.2.3.9.1.1.4
Raise to the power of .
Step 4.2.3.9.1.1.5
Use the power rule to combine exponents.
Step 4.2.3.9.1.1.6
Add and .
Step 4.2.3.9.1.2
Rewrite as .
Step 4.2.3.9.1.3
Apply the product rule to .
Step 4.2.3.9.1.4
Raise to the power of .
Step 4.2.3.9.1.5
Multiply by .
Step 4.2.3.9.1.6
Multiply by .
Step 4.2.3.9.1.7
Multiply by .
Step 4.2.3.9.2
Subtract from .
Step 4.2.3.10
Apply the distributive property.
Step 4.2.3.11
Simplify.
Step 4.2.3.11.1
Multiply by .
Step 4.2.3.11.2
Multiply by .
Step 4.2.3.12
Factor out of .
Step 4.2.3.12.1
Factor out of .
Step 4.2.3.12.2
Factor out of .
Step 4.2.3.12.3
Factor out of .
Step 4.2.3.13
Apply the distributive property.
Step 4.2.3.14
Multiply by .
Step 4.2.3.15
Multiply by .
Step 4.2.4
Simplify by adding terms.
Step 4.2.4.1
Combine the opposite terms in .
Step 4.2.4.1.1
Add and .
Step 4.2.4.1.2
Add and .
Step 4.2.4.1.3
Subtract from .
Step 4.2.4.1.4
Add and .
Step 4.2.4.1.5
Add and .
Step 4.2.4.1.6
Add and .
Step 4.2.4.2
Subtract from .
Step 4.2.4.3
Combine the opposite terms in .
Step 4.2.4.3.1
Add and .
Step 4.2.4.3.2
Add and .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify each term.
Step 4.3.3.1
Factor out of .
Step 4.3.3.1.1
Factor out of .
Step 4.3.3.1.2
Factor out of .
Step 4.3.3.2
Subtract from .
Step 4.3.3.3
To write as a fraction with a common denominator, multiply by .
Step 4.3.3.4
Combine and .
Step 4.3.3.5
Combine the numerators over the common denominator.
Step 4.3.3.6
Simplify the numerator.
Step 4.3.3.6.1
Factor out of .
Step 4.3.3.6.1.1
Factor out of .
Step 4.3.3.6.1.2
Factor out of .
Step 4.3.3.6.1.3
Factor out of .
Step 4.3.3.6.2
Multiply by .
Step 4.3.3.7
To write as a fraction with a common denominator, multiply by .
Step 4.3.3.8
Combine and .
Step 4.3.3.9
Combine the numerators over the common denominator.
Step 4.3.3.10
Simplify the numerator.
Step 4.3.3.10.1
Factor out of .
Step 4.3.3.10.1.1
Factor out of .
Step 4.3.3.10.1.2
Factor out of .
Step 4.3.3.10.1.3
Factor out of .
Step 4.3.3.10.2
Apply the distributive property.
Step 4.3.3.10.3
Rewrite using the commutative property of multiplication.
Step 4.3.3.10.4
Move to the left of .
Step 4.3.3.10.5
Multiply by by adding the exponents.
Step 4.3.3.10.5.1
Move .
Step 4.3.3.10.5.2
Multiply by .
Step 4.3.3.10.6
Multiply by .
Step 4.3.3.11
To write as a fraction with a common denominator, multiply by .
Step 4.3.3.12
Combine and .
Step 4.3.3.13
Combine the numerators over the common denominator.
Step 4.3.3.14
Simplify the numerator.
Step 4.3.3.14.1
Apply the distributive property.
Step 4.3.3.14.2
Simplify.
Step 4.3.3.14.2.1
Rewrite using the commutative property of multiplication.
Step 4.3.3.14.2.2
Rewrite using the commutative property of multiplication.
Step 4.3.3.14.2.3
Move to the left of .
Step 4.3.3.14.3
Simplify each term.
Step 4.3.3.14.3.1
Multiply by by adding the exponents.
Step 4.3.3.14.3.1.1
Move .
Step 4.3.3.14.3.1.2
Multiply by .
Step 4.3.3.14.3.1.2.1
Raise to the power of .
Step 4.3.3.14.3.1.2.2
Use the power rule to combine exponents.
Step 4.3.3.14.3.1.3
Add and .
Step 4.3.3.14.3.2
Multiply by by adding the exponents.
Step 4.3.3.14.3.2.1
Move .
Step 4.3.3.14.3.2.2
Multiply by .
Step 4.3.3.14.4
Multiply by .
Step 4.3.3.14.5
Rewrite in a factored form.
Step 4.3.3.14.5.1
Regroup terms.
Step 4.3.3.14.5.2
Factor out of .
Step 4.3.3.14.5.2.1
Factor out of .
Step 4.3.3.14.5.2.2
Rewrite as .
Step 4.3.3.14.5.2.3
Factor out of .
Step 4.3.3.14.5.3
Rewrite as .
Step 4.3.3.14.5.4
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 4.3.3.14.5.5
Simplify.
Step 4.3.3.14.5.5.1
Move to the left of .
Step 4.3.3.14.5.5.2
Raise to the power of .
Step 4.3.3.14.5.6
Factor out of .
Step 4.3.3.14.5.6.1
Factor out of .
Step 4.3.3.14.5.6.2
Factor out of .
Step 4.3.3.14.5.6.3
Factor out of .
Step 4.3.3.14.5.7
Factor out of .
Step 4.3.3.14.5.7.1
Factor out of .
Step 4.3.3.14.5.7.2
Factor out of .
Step 4.3.3.14.5.7.3
Factor out of .
Step 4.3.3.14.5.8
Apply the distributive property.
Step 4.3.3.14.5.9
Simplify.
Step 4.3.3.14.5.9.1
Rewrite as .
Step 4.3.3.14.5.9.2
Multiply by .
Step 4.3.3.14.5.9.3
Multiply by .
Step 4.3.3.14.5.10
Add and .
Step 4.3.3.14.5.11
Factor by grouping.
Step 4.3.3.14.5.11.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 4.3.3.14.5.11.1.1
Factor out of .
Step 4.3.3.14.5.11.1.2
Rewrite as plus
Step 4.3.3.14.5.11.1.3
Apply the distributive property.
Step 4.3.3.14.5.11.2
Factor out the greatest common factor from each group.
Step 4.3.3.14.5.11.2.1
Group the first two terms and the last two terms.
Step 4.3.3.14.5.11.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.3.3.14.5.11.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.3.3.14.5.12
Combine exponents.
Step 4.3.3.14.5.12.1
Factor out of .
Step 4.3.3.14.5.12.2
Rewrite as .
Step 4.3.3.14.5.12.3
Factor out of .
Step 4.3.3.14.5.12.4
Raise to the power of .
Step 4.3.3.14.5.12.5
Raise to the power of .
Step 4.3.3.14.5.12.6
Use the power rule to combine exponents.
Step 4.3.3.14.5.12.7
Add and .
Step 4.3.3.14.5.12.8
Factor out of .
Step 4.3.3.14.5.12.9
Rewrite as .
Step 4.3.3.14.5.12.10
Factor out of .
Step 4.3.3.14.5.12.11
Rewrite as .
Step 4.3.3.14.5.12.12
Apply the product rule to .
Step 4.3.3.14.5.12.13
Raise to the power of .
Step 4.3.3.14.5.12.14
Multiply by .
Step 4.3.3.14.5.12.15
Raise to the power of .
Step 4.3.3.14.5.12.16
Use the power rule to combine exponents.
Step 4.3.3.14.5.12.17
Add and .
Step 4.3.3.15
Move the negative in front of the fraction.
Step 4.3.3.16
Combine exponents.
Step 4.3.3.16.1
Factor out negative.
Step 4.3.3.16.2
Combine and .
Step 4.3.3.17
Reduce the expression by cancelling the common factors.
Step 4.3.3.17.1
Reduce the expression by cancelling the common factors.
Step 4.3.3.17.1.1
Cancel the common factor.
Step 4.3.3.17.1.2
Rewrite the expression.
Step 4.3.3.17.2
Divide by .
Step 4.3.3.18
Rewrite as .
Step 4.3.3.19
Pull terms out from under the radical, assuming real numbers.
Step 4.3.3.20
Apply the distributive property.
Step 4.3.3.21
Multiply by .
Step 4.3.3.22
Apply the distributive property.
Step 4.3.3.23
Multiply .
Step 4.3.3.23.1
Multiply by .
Step 4.3.3.23.2
Multiply by .
Step 4.3.3.24
Multiply by .
Step 4.3.4
Combine the opposite terms in .
Step 4.3.4.1
Add and .
Step 4.3.4.2
Add and .
Step 4.4
Since and , then is the inverse of .