Algebra Examples

Divide Using Long Polynomial Division (2x^3+x^4-6x^2+11x-10)÷(x^2+2-x)
Step 1
Reorder and .
Step 2
Move .
Step 3
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-++-+-
Step 4
Divide the highest order term in the dividend by the highest order term in divisor .
-++-+-
Step 5
Multiply the new quotient term by the divisor.
-++-+-
+-+
Step 6
The expression needs to be subtracted from the dividend, so change all the signs in
-++-+-
-+-
Step 7
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++-+-
-+-
+-
Step 8
Pull the next terms from the original dividend down into the current dividend.
-++-+-
-+-
+-+
Step 9
Divide the highest order term in the dividend by the highest order term in divisor .
+
-++-+-
-+-
+-+
Step 10
Multiply the new quotient term by the divisor.
+
-++-+-
-+-
+-+
+-+
Step 11
The expression needs to be subtracted from the dividend, so change all the signs in
+
-++-+-
-+-
+-+
-+-
Step 12
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
-++-+-
-+-
+-+
-+-
-+
Step 13
Pull the next terms from the original dividend down into the current dividend.
+
-++-+-
-+-
+-+
-+-
-+-
Step 14
Divide the highest order term in the dividend by the highest order term in divisor .
+-
-++-+-
-+-
+-+
-+-
-+-
Step 15
Multiply the new quotient term by the divisor.
+-
-++-+-
-+-
+-+
-+-
-+-
-+-
Step 16
The expression needs to be subtracted from the dividend, so change all the signs in
+-
-++-+-
-+-
+-+
-+-
-+-
+-+
Step 17
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-
-++-+-
-+-
+-+
-+-
-+-
+-+
Step 18
Since the remander is , the final answer is the quotient.