Algebra Examples

Find the Function Rule table[[x,y],[6,6],[3,8],[9,12]]
Step 1
Check if the function rule is linear.
Tap for more steps...
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form .
Step 1.2
Build a set of equations from the table such that .
Step 1.3
Calculate the values of and .
Tap for more steps...
Step 1.3.1
Solve for in .
Tap for more steps...
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Subtract from both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify .
Tap for more steps...
Step 1.3.2.2.1
Simplify the left side.
Tap for more steps...
Step 1.3.2.2.1.1
Remove parentheses.
Step 1.3.2.2.2
Simplify the right side.
Tap for more steps...
Step 1.3.2.2.2.1
Simplify .
Tap for more steps...
Step 1.3.2.2.2.1.1
Move to the left of .
Step 1.3.2.2.2.1.2
Subtract from .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify .
Tap for more steps...
Step 1.3.2.4.1
Simplify the left side.
Tap for more steps...
Step 1.3.2.4.1.1
Remove parentheses.
Step 1.3.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.3.2.4.2.1
Simplify .
Tap for more steps...
Step 1.3.2.4.2.1.1
Move to the left of .
Step 1.3.2.4.2.1.2
Subtract from .
Step 1.3.3
Solve for in .
Tap for more steps...
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.3.3.2.1
Subtract from both sides of the equation.
Step 1.3.3.2.2
Subtract from .
Step 1.3.3.3
Divide each term in by and simplify.
Tap for more steps...
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.3.3.1
Divide by .
Step 1.3.4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Tap for more steps...
Step 1.3.4.2.1
Simplify .
Tap for more steps...
Step 1.3.4.2.1.1
Multiply by .
Step 1.3.4.2.1.2
Add and .
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Tap for more steps...
Step 1.3.4.4.1
Simplify .
Tap for more steps...
Step 1.3.4.4.1.1
Multiply by .
Step 1.3.4.4.1.2
Subtract from .
Step 1.3.5
Since is not true, there is no solution.
No solution
No solution
Step 1.4
Since for the corresponding values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Check if the function rule is quadratic.
Tap for more steps...
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form .
Step 2.2
Build a set of equations from the table such that .
Step 2.3
Calculate the values of , , and .
Tap for more steps...
Step 2.3.1
Solve for in .
Tap for more steps...
Step 2.3.1.1
Rewrite the equation as .
Step 2.3.1.2
Simplify each term.
Tap for more steps...
Step 2.3.1.2.1
Raise to the power of .
Step 2.3.1.2.2
Move to the left of .
Step 2.3.1.2.3
Move to the left of .
Step 2.3.1.3
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.3.1.3.1
Subtract from both sides of the equation.
Step 2.3.1.3.2
Subtract from both sides of the equation.
Step 2.3.2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.3.2.1
Replace all occurrences of in with .
Step 2.3.2.2
Simplify .
Tap for more steps...
Step 2.3.2.2.1
Simplify the left side.
Tap for more steps...
Step 2.3.2.2.1.1
Remove parentheses.
Step 2.3.2.2.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.2.2.1
Simplify .
Tap for more steps...
Step 2.3.2.2.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.2.2.2.1.1.1
Raise to the power of .
Step 2.3.2.2.2.1.1.2
Move to the left of .
Step 2.3.2.2.2.1.1.3
Move to the left of .
Step 2.3.2.2.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 2.3.2.2.2.1.2.1
Subtract from .
Step 2.3.2.2.2.1.2.2
Subtract from .
Step 2.3.2.3
Replace all occurrences of in with .
Step 2.3.2.4
Simplify .
Tap for more steps...
Step 2.3.2.4.1
Simplify the left side.
Tap for more steps...
Step 2.3.2.4.1.1
Remove parentheses.
Step 2.3.2.4.2
Simplify the right side.
Tap for more steps...
Step 2.3.2.4.2.1
Simplify .
Tap for more steps...
Step 2.3.2.4.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.2.4.2.1.1.1
Raise to the power of .
Step 2.3.2.4.2.1.1.2
Move to the left of .
Step 2.3.2.4.2.1.1.3
Move to the left of .
Step 2.3.2.4.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 2.3.2.4.2.1.2.1
Subtract from .
Step 2.3.2.4.2.1.2.2
Subtract from .
Step 2.3.3
Solve for in .
Tap for more steps...
Step 2.3.3.1
Rewrite the equation as .
Step 2.3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.3.3.2.1
Subtract from both sides of the equation.
Step 2.3.3.2.2
Subtract from both sides of the equation.
Step 2.3.3.2.3
Subtract from .
Step 2.3.3.3
Divide each term in by and simplify.
Tap for more steps...
Step 2.3.3.3.1
Divide each term in by .
Step 2.3.3.3.2
Simplify the left side.
Tap for more steps...
Step 2.3.3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.3.3.2.1.1
Cancel the common factor.
Step 2.3.3.3.2.1.2
Divide by .
Step 2.3.3.3.3
Simplify the right side.
Tap for more steps...
Step 2.3.3.3.3.1
Simplify each term.
Tap for more steps...
Step 2.3.3.3.3.1.1
Cancel the common factor of and .
Tap for more steps...
Step 2.3.3.3.3.1.1.1
Factor out of .
Step 2.3.3.3.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 2.3.3.3.3.1.1.2.1
Factor out of .
Step 2.3.3.3.3.1.1.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.1.2.3
Rewrite the expression.
Step 2.3.3.3.3.1.2
Move the negative in front of the fraction.
Step 2.3.3.3.3.1.3
Cancel the common factor of and .
Tap for more steps...
Step 2.3.3.3.3.1.3.1
Factor out of .
Step 2.3.3.3.3.1.3.2
Cancel the common factors.
Tap for more steps...
Step 2.3.3.3.3.1.3.2.1
Factor out of .
Step 2.3.3.3.3.1.3.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.3.2.3
Rewrite the expression.
Step 2.3.4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.3.4.1
Replace all occurrences of in with .
Step 2.3.4.2
Simplify the right side.
Tap for more steps...
Step 2.3.4.2.1
Simplify .
Tap for more steps...
Step 2.3.4.2.1.1
Simplify each term.
Tap for more steps...
Step 2.3.4.2.1.1.1
Apply the distributive property.
Step 2.3.4.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.3.4.2.1.1.2.1
Move the leading negative in into the numerator.
Step 2.3.4.2.1.1.2.2
Factor out of .
Step 2.3.4.2.1.1.2.3
Factor out of .
Step 2.3.4.2.1.1.2.4
Cancel the common factor.
Step 2.3.4.2.1.1.2.5
Rewrite the expression.
Step 2.3.4.2.1.1.3
Combine and .
Step 2.3.4.2.1.1.4
Multiply by .
Step 2.3.4.2.1.1.5
Cancel the common factor of .
Tap for more steps...
Step 2.3.4.2.1.1.5.1
Factor out of .
Step 2.3.4.2.1.1.5.2
Factor out of .
Step 2.3.4.2.1.1.5.3
Cancel the common factor.
Step 2.3.4.2.1.1.5.4
Rewrite the expression.
Step 2.3.4.2.1.1.6
Combine and .
Step 2.3.4.2.1.1.7
Multiply by .
Step 2.3.4.2.1.1.8
Move the negative in front of the fraction.
Step 2.3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.3
Combine and .
Step 2.3.4.2.1.4
Combine the numerators over the common denominator.
Step 2.3.4.2.1.5
Combine the numerators over the common denominator.
Step 2.3.4.2.1.6
Multiply by .
Step 2.3.4.2.1.7
Subtract from .
Step 2.3.4.2.1.8
Factor out of .
Tap for more steps...
Step 2.3.4.2.1.8.1
Factor out of .
Step 2.3.4.2.1.8.2
Factor out of .
Step 2.3.4.2.1.8.3
Factor out of .
Step 2.3.4.2.1.9
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.10
Simplify terms.
Tap for more steps...
Step 2.3.4.2.1.10.1
Combine and .
Step 2.3.4.2.1.10.2
Combine the numerators over the common denominator.
Step 2.3.4.2.1.11
Simplify the numerator.
Tap for more steps...
Step 2.3.4.2.1.11.1
Factor out of .
Tap for more steps...
Step 2.3.4.2.1.11.1.1
Factor out of .
Step 2.3.4.2.1.11.1.2
Factor out of .
Step 2.3.4.2.1.11.2
Subtract from .
Step 2.3.4.2.1.12
Simplify with factoring out.
Tap for more steps...
Step 2.3.4.2.1.12.1
Factor out of .
Step 2.3.4.2.1.12.2
Rewrite as .
Step 2.3.4.2.1.12.3
Factor out of .
Step 2.3.4.2.1.12.4
Simplify the expression.
Tap for more steps...
Step 2.3.4.2.1.12.4.1
Rewrite as .
Step 2.3.4.2.1.12.4.2
Move the negative in front of the fraction.
Step 2.3.4.3
Replace all occurrences of in with .
Step 2.3.4.4
Simplify the right side.
Tap for more steps...
Step 2.3.4.4.1
Simplify .
Tap for more steps...
Step 2.3.4.4.1.1
Simplify each term.
Tap for more steps...
Step 2.3.4.4.1.1.1
Apply the distributive property.
Step 2.3.4.4.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.3.4.4.1.1.2.1
Move the leading negative in into the numerator.
Step 2.3.4.4.1.1.2.2
Factor out of .
Step 2.3.4.4.1.1.2.3
Factor out of .
Step 2.3.4.4.1.1.2.4
Cancel the common factor.
Step 2.3.4.4.1.1.2.5
Rewrite the expression.
Step 2.3.4.4.1.1.3
Combine and .
Step 2.3.4.4.1.1.4
Multiply by .
Step 2.3.4.4.1.1.5
Cancel the common factor of .
Tap for more steps...
Step 2.3.4.4.1.1.5.1
Factor out of .
Step 2.3.4.4.1.1.5.2
Factor out of .
Step 2.3.4.4.1.1.5.3
Cancel the common factor.
Step 2.3.4.4.1.1.5.4
Rewrite the expression.
Step 2.3.4.4.1.1.6
Combine and .
Step 2.3.4.4.1.1.7
Multiply by .
Step 2.3.4.4.1.1.8
Move the negative in front of the fraction.
Step 2.3.4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.3
Combine and .
Step 2.3.4.4.1.4
Combine the numerators over the common denominator.
Step 2.3.4.4.1.5
Simplify the numerator.
Tap for more steps...
Step 2.3.4.4.1.5.1
Multiply by .
Step 2.3.4.4.1.5.2
Subtract from .
Step 2.3.4.4.1.6
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.7
Combine and .
Step 2.3.4.4.1.8
Combine the numerators over the common denominator.
Step 2.3.4.4.1.9
Combine the numerators over the common denominator.
Step 2.3.4.4.1.10
Multiply by .
Step 2.3.4.4.1.11
Subtract from .
Step 2.3.4.4.1.12
Factor out of .
Tap for more steps...
Step 2.3.4.4.1.12.1
Factor out of .
Step 2.3.4.4.1.12.2
Factor out of .
Step 2.3.4.4.1.12.3
Factor out of .
Step 2.3.4.4.1.13
Factor out of .
Step 2.3.4.4.1.14
Rewrite as .
Step 2.3.4.4.1.15
Factor out of .
Step 2.3.4.4.1.16
Simplify the expression.
Tap for more steps...
Step 2.3.4.4.1.16.1
Rewrite as .
Step 2.3.4.4.1.16.2
Move the negative in front of the fraction.
Step 2.3.5
Solve for in .
Tap for more steps...
Step 2.3.5.1
Rewrite the equation as .
Step 2.3.5.2
Multiply both sides of the equation by .
Step 2.3.5.3
Simplify both sides of the equation.
Tap for more steps...
Step 2.3.5.3.1
Simplify the left side.
Tap for more steps...
Step 2.3.5.3.1.1
Simplify .
Tap for more steps...
Step 2.3.5.3.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.5.3.1.1.1.1
Move the leading negative in into the numerator.
Step 2.3.5.3.1.1.1.2
Move the leading negative in into the numerator.
Step 2.3.5.3.1.1.1.3
Factor out of .
Step 2.3.5.3.1.1.1.4
Cancel the common factor.
Step 2.3.5.3.1.1.1.5
Rewrite the expression.
Step 2.3.5.3.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.3.5.3.1.1.2.1
Factor out of .
Step 2.3.5.3.1.1.2.2
Cancel the common factor.
Step 2.3.5.3.1.1.2.3
Rewrite the expression.
Step 2.3.5.3.1.1.3
Multiply.
Tap for more steps...
Step 2.3.5.3.1.1.3.1
Multiply by .
Step 2.3.5.3.1.1.3.2
Multiply by .
Step 2.3.5.3.2
Simplify the right side.
Tap for more steps...
Step 2.3.5.3.2.1
Simplify .
Tap for more steps...
Step 2.3.5.3.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.5.3.2.1.1.1
Move the leading negative in into the numerator.
Step 2.3.5.3.2.1.1.2
Factor out of .
Step 2.3.5.3.2.1.1.3
Factor out of .
Step 2.3.5.3.2.1.1.4
Cancel the common factor.
Step 2.3.5.3.2.1.1.5
Rewrite the expression.
Step 2.3.5.3.2.1.2
Combine and .
Step 2.3.5.3.2.1.3
Simplify the expression.
Tap for more steps...
Step 2.3.5.3.2.1.3.1
Multiply by .
Step 2.3.5.3.2.1.3.2
Move the negative in front of the fraction.
Step 2.3.5.4
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.3.5.4.1
Add to both sides of the equation.
Step 2.3.5.4.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.5.4.3
Combine and .
Step 2.3.5.4.4
Combine the numerators over the common denominator.
Step 2.3.5.4.5
Simplify the numerator.
Tap for more steps...
Step 2.3.5.4.5.1
Multiply by .
Step 2.3.5.4.5.2
Add and .
Step 2.3.5.4.6
Move the negative in front of the fraction.
Step 2.3.6
Replace all occurrences of with in each equation.
Tap for more steps...
Step 2.3.6.1
Replace all occurrences of in with .
Step 2.3.6.2
Simplify the right side.
Tap for more steps...
Step 2.3.6.2.1
Simplify .
Tap for more steps...
Step 2.3.6.2.1.1
Simplify the numerator.
Tap for more steps...
Step 2.3.6.2.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.3.6.2.1.1.1.1
Move the leading negative in into the numerator.
Step 2.3.6.2.1.1.1.2
Cancel the common factor.
Step 2.3.6.2.1.1.1.3
Rewrite the expression.
Step 2.3.6.2.1.1.2
Subtract from .
Step 2.3.6.2.1.2
Simplify the expression.
Tap for more steps...
Step 2.3.6.2.1.2.1
Multiply by .
Step 2.3.6.2.1.2.2
Divide by .
Step 2.3.6.2.1.2.3
Multiply by .
Step 2.3.6.3
Replace all occurrences of in with .
Step 2.3.6.4
Simplify the right side.
Tap for more steps...
Step 2.3.6.4.1
Simplify .
Tap for more steps...
Step 2.3.6.4.1.1
Combine the numerators over the common denominator.
Step 2.3.6.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.6.4.1.3
Combine and .
Step 2.3.6.4.1.4
Combine the numerators over the common denominator.
Step 2.3.6.4.1.5
Simplify the numerator.
Tap for more steps...
Step 2.3.6.4.1.5.1
Multiply by .
Step 2.3.6.4.1.5.2
Add and .
Step 2.3.6.4.1.6
Multiply the numerator by the reciprocal of the denominator.
Step 2.3.6.4.1.7
Cancel the common factor of .
Tap for more steps...
Step 2.3.6.4.1.7.1
Factor out of .
Step 2.3.6.4.1.7.2
Factor out of .
Step 2.3.6.4.1.7.3
Cancel the common factor.
Step 2.3.6.4.1.7.4
Rewrite the expression.
Step 2.3.6.4.1.8
Multiply by .
Step 2.3.6.4.1.9
Multiply by .
Step 2.3.7
List all of the solutions.
Step 2.4
Calculate the value of using each value in the table and compare this value to the given value in the table.
Tap for more steps...
Step 2.4.1
Calculate the value of such that when , , , and .
Tap for more steps...
Step 2.4.1.1
Simplify each term.
Tap for more steps...
Step 2.4.1.1.1
Raise to the power of .
Step 2.4.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.4.1.1.2.1
Factor out of .
Step 2.4.1.1.2.2
Cancel the common factor.
Step 2.4.1.1.2.3
Rewrite the expression.
Step 2.4.1.1.3
Multiply by .
Step 2.4.1.1.4
Cancel the common factor of .
Tap for more steps...
Step 2.4.1.1.4.1
Move the leading negative in into the numerator.
Step 2.4.1.1.4.2
Factor out of .
Step 2.4.1.1.4.3
Cancel the common factor.
Step 2.4.1.1.4.4
Rewrite the expression.
Step 2.4.1.1.5
Multiply by .
Step 2.4.1.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.4.1.2.1
Subtract from .
Step 2.4.1.2.2
Add and .
Step 2.4.2
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.3
Calculate the value of such that when , , , and .
Tap for more steps...
Step 2.4.3.1
Simplify each term.
Tap for more steps...
Step 2.4.3.1.1
Raise to the power of .
Step 2.4.3.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.4.3.1.2.1
Cancel the common factor.
Step 2.4.3.1.2.2
Rewrite the expression.
Step 2.4.3.1.3
Cancel the common factor of .
Tap for more steps...
Step 2.4.3.1.3.1
Move the leading negative in into the numerator.
Step 2.4.3.1.3.2
Cancel the common factor.
Step 2.4.3.1.3.3
Rewrite the expression.
Step 2.4.3.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.4.3.2.1
Subtract from .
Step 2.4.3.2.2
Add and .
Step 2.4.4
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.5
Calculate the value of such that when , , , and .
Tap for more steps...
Step 2.4.5.1
Simplify each term.
Tap for more steps...
Step 2.4.5.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.4.5.1.1.1
Factor out of .
Step 2.4.5.1.1.2
Cancel the common factor.
Step 2.4.5.1.1.3
Rewrite the expression.
Step 2.4.5.1.2
Multiply by .
Step 2.4.5.1.3
Cancel the common factor of .
Tap for more steps...
Step 2.4.5.1.3.1
Move the leading negative in into the numerator.
Step 2.4.5.1.3.2
Factor out of .
Step 2.4.5.1.3.3
Cancel the common factor.
Step 2.4.5.1.3.4
Rewrite the expression.
Step 2.4.5.1.4
Multiply by .
Step 2.4.5.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.4.5.2.1
Subtract from .
Step 2.4.5.2.2
Add and .
Step 2.4.6
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.7
Since for the corresponding values, the function is quadratic.
The function is quadratic
The function is quadratic
The function is quadratic
Step 3
Since all , the function is quadratic and follows the form .