Enter a problem...
Algebra Examples
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form .
Step 1.2
Build a set of equations from the table such that .
Step 1.3
Calculate the values of and .
Step 1.3.1
Solve for in .
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Subtract from both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify the right side.
Step 1.3.2.2.1
Simplify .
Step 1.3.2.2.1.1
Simplify each term.
Step 1.3.2.2.1.1.1
Apply the distributive property.
Step 1.3.2.2.1.1.2
Multiply by .
Step 1.3.2.2.1.1.3
Multiply by .
Step 1.3.2.2.1.2
Add and .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify the right side.
Step 1.3.2.4.1
Simplify .
Step 1.3.2.4.1.1
Simplify each term.
Step 1.3.2.4.1.1.1
Apply the distributive property.
Step 1.3.2.4.1.1.2
Multiply by .
Step 1.3.2.4.1.1.3
Multiply by .
Step 1.3.2.4.1.2
Add and .
Step 1.3.3
Solve for in .
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Step 1.3.3.2.1
Subtract from both sides of the equation.
Step 1.3.3.2.2
Subtract from .
Step 1.3.3.3
Divide each term in by and simplify.
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of .
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide by .
Step 1.3.4
Replace all occurrences of with in each equation.
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Simplify .
Step 1.3.4.2.1.1
Multiply by .
Step 1.3.4.2.1.2
Subtract from .
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Step 1.3.4.4.1
Simplify .
Step 1.3.4.4.1.1
Multiply by .
Step 1.3.4.4.1.2
Subtract from .
Step 1.3.5
Since is not true, there is no solution.
No solution
No solution
Step 1.4
Since for the corresponding values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form .
Step 2.2
Build a set of equations from the table such that .
Step 2.3
Calculate the values of , , and .
Step 2.3.1
Solve for in .
Step 2.3.1.1
Rewrite the equation as .
Step 2.3.1.2
Move all terms not containing to the right side of the equation.
Step 2.3.1.2.1
Subtract from both sides of the equation.
Step 2.3.1.2.2
Subtract from both sides of the equation.
Step 2.3.2
Replace all occurrences of with in each equation.
Step 2.3.2.1
Replace all occurrences of in with .
Step 2.3.2.2
Simplify the right side.
Step 2.3.2.2.1
Simplify .
Step 2.3.2.2.1.1
Simplify each term.
Step 2.3.2.2.1.1.1
Raise to the power of .
Step 2.3.2.2.1.1.2
Apply the distributive property.
Step 2.3.2.2.1.1.3
Simplify.
Step 2.3.2.2.1.1.3.1
Multiply by .
Step 2.3.2.2.1.1.3.2
Multiply by .
Step 2.3.2.2.1.1.3.3
Multiply by .
Step 2.3.2.2.1.1.4
Move to the left of .
Step 2.3.2.2.1.2
Simplify by adding terms.
Step 2.3.2.2.1.2.1
Add and .
Step 2.3.2.2.1.2.2
Add and .
Step 2.3.2.3
Replace all occurrences of in with .
Step 2.3.2.4
Simplify the right side.
Step 2.3.2.4.1
Simplify .
Step 2.3.2.4.1.1
Simplify each term.
Step 2.3.2.4.1.1.1
Raise to the power of .
Step 2.3.2.4.1.1.2
Apply the distributive property.
Step 2.3.2.4.1.1.3
Simplify.
Step 2.3.2.4.1.1.3.1
Multiply by .
Step 2.3.2.4.1.1.3.2
Multiply by .
Step 2.3.2.4.1.1.3.3
Multiply by .
Step 2.3.2.4.1.1.4
Move to the left of .
Step 2.3.2.4.1.2
Simplify by adding terms.
Step 2.3.2.4.1.2.1
Add and .
Step 2.3.2.4.1.2.2
Add and .
Step 2.3.3
Solve for in .
Step 2.3.3.1
Rewrite the equation as .
Step 2.3.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.3.2.1
Subtract from both sides of the equation.
Step 2.3.3.2.2
Add to both sides of the equation.
Step 2.3.3.2.3
Subtract from .
Step 2.3.3.3
Divide each term in by and simplify.
Step 2.3.3.3.1
Divide each term in by .
Step 2.3.3.3.2
Simplify the left side.
Step 2.3.3.3.2.1
Cancel the common factor of .
Step 2.3.3.3.2.1.1
Cancel the common factor.
Step 2.3.3.3.2.1.2
Divide by .
Step 2.3.3.3.3
Simplify the right side.
Step 2.3.3.3.3.1
Simplify each term.
Step 2.3.3.3.3.1.1
Cancel the common factor of and .
Step 2.3.3.3.3.1.1.1
Factor out of .
Step 2.3.3.3.3.1.1.2
Cancel the common factors.
Step 2.3.3.3.3.1.1.2.1
Factor out of .
Step 2.3.3.3.3.1.1.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.1.2.3
Rewrite the expression.
Step 2.3.3.3.3.1.2
Cancel the common factor of and .
Step 2.3.3.3.3.1.2.1
Factor out of .
Step 2.3.3.3.3.1.2.2
Cancel the common factors.
Step 2.3.3.3.3.1.2.2.1
Factor out of .
Step 2.3.3.3.3.1.2.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.2.2.3
Rewrite the expression.
Step 2.3.3.3.3.1.3
Move the negative in front of the fraction.
Step 2.3.4
Replace all occurrences of with in each equation.
Step 2.3.4.1
Replace all occurrences of in with .
Step 2.3.4.2
Simplify the right side.
Step 2.3.4.2.1
Simplify .
Step 2.3.4.2.1.1
Simplify each term.
Step 2.3.4.2.1.1.1
Apply the distributive property.
Step 2.3.4.2.1.1.2
Cancel the common factor of .
Step 2.3.4.2.1.1.2.1
Factor out of .
Step 2.3.4.2.1.1.2.2
Cancel the common factor.
Step 2.3.4.2.1.1.2.3
Rewrite the expression.
Step 2.3.4.2.1.1.3
Multiply by .
Step 2.3.4.2.1.1.4
Cancel the common factor of .
Step 2.3.4.2.1.1.4.1
Move the leading negative in into the numerator.
Step 2.3.4.2.1.1.4.2
Factor out of .
Step 2.3.4.2.1.1.4.3
Factor out of .
Step 2.3.4.2.1.1.4.4
Cancel the common factor.
Step 2.3.4.2.1.1.4.5
Rewrite the expression.
Step 2.3.4.2.1.1.5
Combine and .
Step 2.3.4.2.1.1.6
Multiply by .
Step 2.3.4.2.1.2
Subtract from .
Step 2.3.4.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.4
Simplify terms.
Step 2.3.4.2.1.4.1
Combine and .
Step 2.3.4.2.1.4.2
Combine the numerators over the common denominator.
Step 2.3.4.2.1.5
Simplify each term.
Step 2.3.4.2.1.5.1
Simplify the numerator.
Step 2.3.4.2.1.5.1.1
Factor out of .
Step 2.3.4.2.1.5.1.1.1
Factor out of .
Step 2.3.4.2.1.5.1.1.2
Factor out of .
Step 2.3.4.2.1.5.1.1.3
Factor out of .
Step 2.3.4.2.1.5.1.2
Multiply by .
Step 2.3.4.2.1.5.1.3
Subtract from .
Step 2.3.4.2.1.5.2
Move to the left of .
Step 2.3.4.2.1.5.3
Move the negative in front of the fraction.
Step 2.3.4.3
Replace all occurrences of in with .
Step 2.3.4.4
Simplify the right side.
Step 2.3.4.4.1
Simplify .
Step 2.3.4.4.1.1
Simplify each term.
Step 2.3.4.4.1.1.1
Apply the distributive property.
Step 2.3.4.4.1.1.2
Multiply .
Step 2.3.4.4.1.1.2.1
Multiply by .
Step 2.3.4.4.1.1.2.2
Multiply by .
Step 2.3.4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.3
Combine and .
Step 2.3.4.4.1.4
Combine the numerators over the common denominator.
Step 2.3.4.4.1.5
Simplify the numerator.
Step 2.3.4.4.1.5.1
Multiply by .
Step 2.3.4.4.1.5.2
Subtract from .
Step 2.3.4.4.1.6
Divide by .
Step 2.3.4.4.1.7
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.8
Simplify terms.
Step 2.3.4.4.1.8.1
Combine and .
Step 2.3.4.4.1.8.2
Combine the numerators over the common denominator.
Step 2.3.4.4.1.9
Simplify each term.
Step 2.3.4.4.1.9.1
Simplify the numerator.
Step 2.3.4.4.1.9.1.1
Factor out of .
Step 2.3.4.4.1.9.1.1.1
Factor out of .
Step 2.3.4.4.1.9.1.1.2
Factor out of .
Step 2.3.4.4.1.9.1.1.3
Factor out of .
Step 2.3.4.4.1.9.1.2
Multiply by .
Step 2.3.4.4.1.9.1.3
Subtract from .
Step 2.3.4.4.1.9.2
Multiply by .
Step 2.3.5
Solve for in .
Step 2.3.5.1
Rewrite the equation as .
Step 2.3.5.2
Move all terms not containing to the right side of the equation.
Step 2.3.5.2.1
Add to both sides of the equation.
Step 2.3.5.2.2
Add and .
Step 2.3.5.3
Multiply both sides of the equation by .
Step 2.3.5.4
Simplify both sides of the equation.
Step 2.3.5.4.1
Simplify the left side.
Step 2.3.5.4.1.1
Simplify .
Step 2.3.5.4.1.1.1
Cancel the common factor of .
Step 2.3.5.4.1.1.1.1
Move the leading negative in into the numerator.
Step 2.3.5.4.1.1.1.2
Factor out of .
Step 2.3.5.4.1.1.1.3
Cancel the common factor.
Step 2.3.5.4.1.1.1.4
Rewrite the expression.
Step 2.3.5.4.1.1.2
Multiply.
Step 2.3.5.4.1.1.2.1
Multiply by .
Step 2.3.5.4.1.1.2.2
Multiply by .
Step 2.3.5.4.2
Simplify the right side.
Step 2.3.5.4.2.1
Multiply by .
Step 2.3.6
Replace all occurrences of with in each equation.
Step 2.3.6.1
Replace all occurrences of in with .
Step 2.3.6.2
Simplify the right side.
Step 2.3.6.2.1
Simplify .
Step 2.3.6.2.1.1
Divide by .
Step 2.3.6.2.1.2
Add and .
Step 2.3.6.3
Replace all occurrences of in with .
Step 2.3.6.4
Simplify the right side.
Step 2.3.6.4.1
Simplify .
Step 2.3.6.4.1.1
Simplify each term.
Step 2.3.6.4.1.1.1
Cancel the common factor of and .
Step 2.3.6.4.1.1.1.1
Cancel the common factor.
Step 2.3.6.4.1.1.1.2
Divide by .
Step 2.3.6.4.1.1.2
Multiply by .
Step 2.3.6.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.6.4.1.3
Combine and .
Step 2.3.6.4.1.4
Combine the numerators over the common denominator.
Step 2.3.6.4.1.5
Simplify the numerator.
Step 2.3.6.4.1.5.1
Multiply by .
Step 2.3.6.4.1.5.2
Subtract from .
Step 2.3.7
List all of the solutions.
Step 2.4
Calculate the value of using each value in the table and compare this value to the given value in the table.
Step 2.4.1
Calculate the value of such that when , , , and .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
One to any power is one.
Step 2.4.1.1.2
Multiply by .
Step 2.4.1.1.3
Multiply by .
Step 2.4.1.2
Find the common denominator.
Step 2.4.1.2.1
Write as a fraction with denominator .
Step 2.4.1.2.2
Multiply by .
Step 2.4.1.2.3
Multiply by .
Step 2.4.1.2.4
Write as a fraction with denominator .
Step 2.4.1.2.5
Multiply by .
Step 2.4.1.2.6
Multiply by .
Step 2.4.1.3
Combine the numerators over the common denominator.
Step 2.4.1.4
Simplify each term.
Step 2.4.1.4.1
Multiply by .
Step 2.4.1.4.2
Multiply by .
Step 2.4.1.5
Reduce the expression by cancelling the common factors.
Step 2.4.1.5.1
Add and .
Step 2.4.1.5.2
Add and .
Step 2.4.1.5.3
Cancel the common factor of and .
Step 2.4.1.5.3.1
Rewrite as .
Step 2.4.1.5.3.2
Cancel the common factors.
Step 2.4.1.5.3.2.1
Rewrite as .
Step 2.4.1.5.3.2.2
Cancel the common factor.
Step 2.4.1.5.3.2.3
Rewrite the expression.
Step 2.4.2
If the table has a quadratic function rule, for the corresponding value, . This check does not pass, since and . The function rule can't be quadratic.
Step 2.4.3
Since for the corresponding values, the function is not quadratic.
The function is not quadratic
The function is not quadratic
The function is not quadratic
Step 3
There are no values of , , or in the equations or that work for every pair of and .
The table does not have a function rule that is linear or quadratic.