Enter a problem...
Algebra Examples
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form .
Step 1.2
Build a set of equations from the table such that .
Step 1.3
Calculate the values of and .
Step 1.3.1
Solve for in .
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Subtract from both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify .
Step 1.3.2.2.1
Simplify the left side.
Step 1.3.2.2.1.1
Remove parentheses.
Step 1.3.2.2.2
Simplify the right side.
Step 1.3.2.2.2.1
Simplify .
Step 1.3.2.2.2.1.1
Move to the left of .
Step 1.3.2.2.2.1.2
Subtract from .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify .
Step 1.3.2.4.1
Simplify the left side.
Step 1.3.2.4.1.1
Remove parentheses.
Step 1.3.2.4.2
Simplify the right side.
Step 1.3.2.4.2.1
Simplify .
Step 1.3.2.4.2.1.1
Move to the left of .
Step 1.3.2.4.2.1.2
Subtract from .
Step 1.3.3
Solve for in .
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Step 1.3.3.2.1
Subtract from both sides of the equation.
Step 1.3.3.2.2
Subtract from .
Step 1.3.3.3
Divide each term in by and simplify.
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of .
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide by .
Step 1.3.4
Replace all occurrences of with in each equation.
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Simplify .
Step 1.3.4.2.1.1
Multiply by .
Step 1.3.4.2.1.2
Add and .
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Step 1.3.4.4.1
Simplify .
Step 1.3.4.4.1.1
Multiply by .
Step 1.3.4.4.1.2
Subtract from .
Step 1.3.5
Since is not true, there is no solution.
No solution
No solution
Step 1.4
Since for the corresponding values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form .
Step 2.2
Build a set of equations from the table such that .
Step 2.3
Calculate the values of , , and .
Step 2.3.1
Solve for in .
Step 2.3.1.1
Rewrite the equation as .
Step 2.3.1.2
Simplify each term.
Step 2.3.1.2.1
Raise to the power of .
Step 2.3.1.2.2
Move to the left of .
Step 2.3.1.2.3
Move to the left of .
Step 2.3.1.3
Move all terms not containing to the right side of the equation.
Step 2.3.1.3.1
Subtract from both sides of the equation.
Step 2.3.1.3.2
Subtract from both sides of the equation.
Step 2.3.2
Replace all occurrences of with in each equation.
Step 2.3.2.1
Replace all occurrences of in with .
Step 2.3.2.2
Simplify .
Step 2.3.2.2.1
Simplify the left side.
Step 2.3.2.2.1.1
Remove parentheses.
Step 2.3.2.2.2
Simplify the right side.
Step 2.3.2.2.2.1
Simplify .
Step 2.3.2.2.2.1.1
Simplify each term.
Step 2.3.2.2.2.1.1.1
Raise to the power of .
Step 2.3.2.2.2.1.1.2
Move to the left of .
Step 2.3.2.2.2.1.1.3
Move to the left of .
Step 2.3.2.2.2.1.2
Simplify by adding terms.
Step 2.3.2.2.2.1.2.1
Subtract from .
Step 2.3.2.2.2.1.2.2
Subtract from .
Step 2.3.2.3
Replace all occurrences of in with .
Step 2.3.2.4
Simplify .
Step 2.3.2.4.1
Simplify the left side.
Step 2.3.2.4.1.1
Remove parentheses.
Step 2.3.2.4.2
Simplify the right side.
Step 2.3.2.4.2.1
Simplify .
Step 2.3.2.4.2.1.1
Simplify each term.
Step 2.3.2.4.2.1.1.1
Raise to the power of .
Step 2.3.2.4.2.1.1.2
Move to the left of .
Step 2.3.2.4.2.1.1.3
Move to the left of .
Step 2.3.2.4.2.1.2
Simplify by adding terms.
Step 2.3.2.4.2.1.2.1
Subtract from .
Step 2.3.2.4.2.1.2.2
Subtract from .
Step 2.3.3
Solve for in .
Step 2.3.3.1
Rewrite the equation as .
Step 2.3.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.3.2.1
Subtract from both sides of the equation.
Step 2.3.3.2.2
Subtract from both sides of the equation.
Step 2.3.3.2.3
Subtract from .
Step 2.3.3.3
Divide each term in by and simplify.
Step 2.3.3.3.1
Divide each term in by .
Step 2.3.3.3.2
Simplify the left side.
Step 2.3.3.3.2.1
Cancel the common factor of .
Step 2.3.3.3.2.1.1
Cancel the common factor.
Step 2.3.3.3.2.1.2
Divide by .
Step 2.3.3.3.3
Simplify the right side.
Step 2.3.3.3.3.1
Simplify each term.
Step 2.3.3.3.3.1.1
Cancel the common factor of and .
Step 2.3.3.3.3.1.1.1
Factor out of .
Step 2.3.3.3.3.1.1.2
Cancel the common factors.
Step 2.3.3.3.3.1.1.2.1
Factor out of .
Step 2.3.3.3.3.1.1.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.1.2.3
Rewrite the expression.
Step 2.3.3.3.3.1.2
Move the negative in front of the fraction.
Step 2.3.3.3.3.1.3
Cancel the common factor of and .
Step 2.3.3.3.3.1.3.1
Factor out of .
Step 2.3.3.3.3.1.3.2
Cancel the common factors.
Step 2.3.3.3.3.1.3.2.1
Factor out of .
Step 2.3.3.3.3.1.3.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.3.2.3
Rewrite the expression.
Step 2.3.4
Replace all occurrences of with in each equation.
Step 2.3.4.1
Replace all occurrences of in with .
Step 2.3.4.2
Simplify the right side.
Step 2.3.4.2.1
Simplify .
Step 2.3.4.2.1.1
Simplify each term.
Step 2.3.4.2.1.1.1
Apply the distributive property.
Step 2.3.4.2.1.1.2
Cancel the common factor of .
Step 2.3.4.2.1.1.2.1
Move the leading negative in into the numerator.
Step 2.3.4.2.1.1.2.2
Factor out of .
Step 2.3.4.2.1.1.2.3
Factor out of .
Step 2.3.4.2.1.1.2.4
Cancel the common factor.
Step 2.3.4.2.1.1.2.5
Rewrite the expression.
Step 2.3.4.2.1.1.3
Combine and .
Step 2.3.4.2.1.1.4
Multiply by .
Step 2.3.4.2.1.1.5
Cancel the common factor of .
Step 2.3.4.2.1.1.5.1
Factor out of .
Step 2.3.4.2.1.1.5.2
Factor out of .
Step 2.3.4.2.1.1.5.3
Cancel the common factor.
Step 2.3.4.2.1.1.5.4
Rewrite the expression.
Step 2.3.4.2.1.1.6
Combine and .
Step 2.3.4.2.1.1.7
Multiply by .
Step 2.3.4.2.1.1.8
Move the negative in front of the fraction.
Step 2.3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.3
Combine and .
Step 2.3.4.2.1.4
Combine the numerators over the common denominator.
Step 2.3.4.2.1.5
Combine the numerators over the common denominator.
Step 2.3.4.2.1.6
Multiply by .
Step 2.3.4.2.1.7
Add and .
Step 2.3.4.2.1.8
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.9
Simplify terms.
Step 2.3.4.2.1.9.1
Combine and .
Step 2.3.4.2.1.9.2
Combine the numerators over the common denominator.
Step 2.3.4.2.1.10
Simplify the numerator.
Step 2.3.4.2.1.10.1
Multiply by .
Step 2.3.4.2.1.10.2
Add and .
Step 2.3.4.3
Replace all occurrences of in with .
Step 2.3.4.4
Simplify the right side.
Step 2.3.4.4.1
Simplify .
Step 2.3.4.4.1.1
Simplify each term.
Step 2.3.4.4.1.1.1
Apply the distributive property.
Step 2.3.4.4.1.1.2
Cancel the common factor of .
Step 2.3.4.4.1.1.2.1
Move the leading negative in into the numerator.
Step 2.3.4.4.1.1.2.2
Factor out of .
Step 2.3.4.4.1.1.2.3
Factor out of .
Step 2.3.4.4.1.1.2.4
Cancel the common factor.
Step 2.3.4.4.1.1.2.5
Rewrite the expression.
Step 2.3.4.4.1.1.3
Cancel the common factor of .
Step 2.3.4.4.1.1.3.1
Factor out of .
Step 2.3.4.4.1.1.3.2
Factor out of .
Step 2.3.4.4.1.1.3.3
Cancel the common factor.
Step 2.3.4.4.1.1.3.4
Rewrite the expression.
Step 2.3.4.4.1.1.4
Simplify each term.
Step 2.3.4.4.1.1.4.1
Move the negative in front of the fraction.
Step 2.3.4.4.1.1.4.2
Multiply .
Step 2.3.4.4.1.1.4.2.1
Multiply by .
Step 2.3.4.4.1.1.4.2.2
Multiply by .
Step 2.3.4.4.1.1.4.3
Rewrite as .
Step 2.3.4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.3
Combine and .
Step 2.3.4.4.1.4
Combine the numerators over the common denominator.
Step 2.3.4.4.1.5
Simplify the numerator.
Step 2.3.4.4.1.5.1
Multiply by .
Step 2.3.4.4.1.5.2
Subtract from .
Step 2.3.4.4.1.6
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.7
Combine and .
Step 2.3.4.4.1.8
Combine the numerators over the common denominator.
Step 2.3.4.4.1.9
Combine the numerators over the common denominator.
Step 2.3.4.4.1.10
Multiply by .
Step 2.3.4.4.1.11
Subtract from .
Step 2.3.4.4.1.12
Factor out of .
Step 2.3.4.4.1.12.1
Factor out of .
Step 2.3.4.4.1.12.2
Factor out of .
Step 2.3.4.4.1.12.3
Factor out of .
Step 2.3.4.4.1.13
Factor out of .
Step 2.3.4.4.1.14
Rewrite as .
Step 2.3.4.4.1.15
Factor out of .
Step 2.3.4.4.1.16
Simplify the expression.
Step 2.3.4.4.1.16.1
Rewrite as .
Step 2.3.4.4.1.16.2
Move the negative in front of the fraction.
Step 2.3.5
Solve for in .
Step 2.3.5.1
Rewrite the equation as .
Step 2.3.5.2
Multiply both sides of the equation by .
Step 2.3.5.3
Simplify both sides of the equation.
Step 2.3.5.3.1
Simplify the left side.
Step 2.3.5.3.1.1
Cancel the common factor of .
Step 2.3.5.3.1.1.1
Cancel the common factor.
Step 2.3.5.3.1.1.2
Rewrite the expression.
Step 2.3.5.3.2
Simplify the right side.
Step 2.3.5.3.2.1
Multiply by .
Step 2.3.5.4
Move all terms not containing to the right side of the equation.
Step 2.3.5.4.1
Subtract from both sides of the equation.
Step 2.3.5.4.2
Subtract from .
Step 2.3.6
Replace all occurrences of with in each equation.
Step 2.3.6.1
Replace all occurrences of in with .
Step 2.3.6.2
Simplify the right side.
Step 2.3.6.2.1
Simplify .
Step 2.3.6.2.1.1
Subtract from .
Step 2.3.6.2.1.2
Multiply by .
Step 2.3.6.2.1.3
Divide by .
Step 2.3.6.2.1.4
Multiply by .
Step 2.3.6.3
Replace all occurrences of in with .
Step 2.3.6.4
Simplify the right side.
Step 2.3.6.4.1
Simplify .
Step 2.3.6.4.1.1
Combine the numerators over the common denominator.
Step 2.3.6.4.1.2
Simplify the expression.
Step 2.3.6.4.1.2.1
Add and .
Step 2.3.6.4.1.2.2
Divide by .
Step 2.3.7
List all of the solutions.
Step 2.4
Calculate the value of using each value in the table and compare this value to the given value in the table.
Step 2.4.1
Calculate the value of such that when , , , and .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Raise to the power of .
Step 2.4.1.1.2
Multiply by .
Step 2.4.1.1.3
Multiply by .
Step 2.4.1.2
Simplify by adding numbers.
Step 2.4.1.2.1
Add and .
Step 2.4.1.2.2
Add and .
Step 2.4.2
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.3
Calculate the value of such that when , , , and .
Step 2.4.3.1
Simplify each term.
Step 2.4.3.1.1
Raise to the power of .
Step 2.4.3.1.2
Multiply by .
Step 2.4.3.1.3
Multiply by .
Step 2.4.3.2
Simplify by adding numbers.
Step 2.4.3.2.1
Add and .
Step 2.4.3.2.2
Add and .
Step 2.4.4
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.5
Calculate the value of such that when , , , and .
Step 2.4.5.1
Simplify each term.
Step 2.4.5.1.1
Raise to the power of .
Step 2.4.5.1.2
Multiply by .
Step 2.4.5.1.3
Multiply by .
Step 2.4.5.2
Simplify by adding numbers.
Step 2.4.5.2.1
Add and .
Step 2.4.5.2.2
Add and .
Step 2.4.6
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.7
Since for the corresponding values, the function is quadratic.
The function is quadratic
The function is quadratic
The function is quadratic
Step 3
Since all , the function is quadratic and follows the form .