Enter a problem...
Algebra Examples
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form .
Step 1.2
Build a set of equations from the table such that .
Step 1.3
Calculate the values of and .
Step 1.3.1
Solve for in .
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Subtract from both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify the right side.
Step 1.3.2.2.1
Simplify .
Step 1.3.2.2.1.1
Simplify each term.
Step 1.3.2.2.1.1.1
Apply the distributive property.
Step 1.3.2.2.1.1.2
Multiply by .
Step 1.3.2.2.1.1.3
Multiply by .
Step 1.3.2.2.1.2
Add and .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify the right side.
Step 1.3.2.4.1
Simplify .
Step 1.3.2.4.1.1
Simplify each term.
Step 1.3.2.4.1.1.1
Apply the distributive property.
Step 1.3.2.4.1.1.2
Multiply by .
Step 1.3.2.4.1.1.3
Multiply by .
Step 1.3.2.4.1.2
Add and .
Step 1.3.3
Solve for in .
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Step 1.3.3.2.1
Add to both sides of the equation.
Step 1.3.3.2.2
Add and .
Step 1.3.3.3
Divide each term in by and simplify.
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of .
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Move the negative in front of the fraction.
Step 1.3.4
Replace all occurrences of with in each equation.
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Simplify .
Step 1.3.4.2.1.1
Multiply .
Step 1.3.4.2.1.1.1
Multiply by .
Step 1.3.4.2.1.1.2
Combine and .
Step 1.3.4.2.1.1.3
Multiply by .
Step 1.3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.3.4.2.1.3
Combine and .
Step 1.3.4.2.1.4
Combine the numerators over the common denominator.
Step 1.3.4.2.1.5
Simplify the numerator.
Step 1.3.4.2.1.5.1
Multiply by .
Step 1.3.4.2.1.5.2
Add and .
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Step 1.3.4.4.1
Simplify .
Step 1.3.4.4.1.1
Multiply .
Step 1.3.4.4.1.1.1
Multiply by .
Step 1.3.4.4.1.1.2
Multiply by .
Step 1.3.4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.3.4.4.1.3
Combine and .
Step 1.3.4.4.1.4
Combine the numerators over the common denominator.
Step 1.3.4.4.1.5
Simplify the numerator.
Step 1.3.4.4.1.5.1
Multiply by .
Step 1.3.4.4.1.5.2
Add and .
Step 1.3.5
Since is not true, there is no solution.
No solution
No solution
Step 1.4
Since for the corresponding values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form .
Step 2.2
Build a set of equations from the table such that .
Step 2.3
Calculate the values of , , and .
Step 2.3.1
Solve for in .
Step 2.3.1.1
Rewrite the equation as .
Step 2.3.1.2
Move all terms not containing to the right side of the equation.
Step 2.3.1.2.1
Subtract from both sides of the equation.
Step 2.3.1.2.2
Subtract from both sides of the equation.
Step 2.3.2
Replace all occurrences of with in each equation.
Step 2.3.2.1
Replace all occurrences of in with .
Step 2.3.2.2
Simplify the right side.
Step 2.3.2.2.1
Simplify .
Step 2.3.2.2.1.1
Simplify each term.
Step 2.3.2.2.1.1.1
Raise to the power of .
Step 2.3.2.2.1.1.2
Apply the distributive property.
Step 2.3.2.2.1.1.3
Simplify.
Step 2.3.2.2.1.1.3.1
Multiply by .
Step 2.3.2.2.1.1.3.2
Multiply by .
Step 2.3.2.2.1.1.3.3
Multiply by .
Step 2.3.2.2.1.1.4
Move to the left of .
Step 2.3.2.2.1.2
Simplify by adding terms.
Step 2.3.2.2.1.2.1
Add and .
Step 2.3.2.2.1.2.2
Add and .
Step 2.3.2.3
Replace all occurrences of in with .
Step 2.3.2.4
Simplify the right side.
Step 2.3.2.4.1
Simplify .
Step 2.3.2.4.1.1
Simplify each term.
Step 2.3.2.4.1.1.1
Raise to the power of .
Step 2.3.2.4.1.1.2
Apply the distributive property.
Step 2.3.2.4.1.1.3
Simplify.
Step 2.3.2.4.1.1.3.1
Multiply by .
Step 2.3.2.4.1.1.3.2
Multiply by .
Step 2.3.2.4.1.1.3.3
Multiply by .
Step 2.3.2.4.1.1.4
Move to the left of .
Step 2.3.2.4.1.2
Simplify by adding terms.
Step 2.3.2.4.1.2.1
Add and .
Step 2.3.2.4.1.2.2
Add and .
Step 2.3.3
Solve for in .
Step 2.3.3.1
Rewrite the equation as .
Step 2.3.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.3.2.1
Add to both sides of the equation.
Step 2.3.3.2.2
Add to both sides of the equation.
Step 2.3.3.2.3
Add and .
Step 2.3.3.3
Divide each term in by and simplify.
Step 2.3.3.3.1
Divide each term in by .
Step 2.3.3.3.2
Simplify the left side.
Step 2.3.3.3.2.1
Cancel the common factor of .
Step 2.3.3.3.2.1.1
Cancel the common factor.
Step 2.3.3.3.2.1.2
Divide by .
Step 2.3.3.3.3
Simplify the right side.
Step 2.3.3.3.3.1
Simplify each term.
Step 2.3.3.3.3.1.1
Move the negative in front of the fraction.
Step 2.3.3.3.3.1.2
Cancel the common factor of and .
Step 2.3.3.3.3.1.2.1
Factor out of .
Step 2.3.3.3.3.1.2.2
Cancel the common factors.
Step 2.3.3.3.3.1.2.2.1
Factor out of .
Step 2.3.3.3.3.1.2.2.2
Cancel the common factor.
Step 2.3.3.3.3.1.2.2.3
Rewrite the expression.
Step 2.3.3.3.3.1.3
Move the negative in front of the fraction.
Step 2.3.4
Replace all occurrences of with in each equation.
Step 2.3.4.1
Replace all occurrences of in with .
Step 2.3.4.2
Simplify the right side.
Step 2.3.4.2.1
Simplify .
Step 2.3.4.2.1.1
Simplify each term.
Step 2.3.4.2.1.1.1
Apply the distributive property.
Step 2.3.4.2.1.1.2
Cancel the common factor of .
Step 2.3.4.2.1.1.2.1
Move the leading negative in into the numerator.
Step 2.3.4.2.1.1.2.2
Factor out of .
Step 2.3.4.2.1.1.2.3
Factor out of .
Step 2.3.4.2.1.1.2.4
Cancel the common factor.
Step 2.3.4.2.1.1.2.5
Rewrite the expression.
Step 2.3.4.2.1.1.3
Cancel the common factor of .
Step 2.3.4.2.1.1.3.1
Move the leading negative in into the numerator.
Step 2.3.4.2.1.1.3.2
Factor out of .
Step 2.3.4.2.1.1.3.3
Factor out of .
Step 2.3.4.2.1.1.3.4
Cancel the common factor.
Step 2.3.4.2.1.1.3.5
Rewrite the expression.
Step 2.3.4.2.1.1.4
Combine and .
Step 2.3.4.2.1.1.5
Multiply by .
Step 2.3.4.2.1.1.6
Simplify each term.
Step 2.3.4.2.1.1.6.1
Move the negative in front of the fraction.
Step 2.3.4.2.1.1.6.2
Multiply .
Step 2.3.4.2.1.1.6.2.1
Multiply by .
Step 2.3.4.2.1.1.6.2.2
Multiply by .
Step 2.3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.3
Combine and .
Step 2.3.4.2.1.4
Combine the numerators over the common denominator.
Step 2.3.4.2.1.5
Simplify the numerator.
Step 2.3.4.2.1.5.1
Multiply by .
Step 2.3.4.2.1.5.2
Add and .
Step 2.3.4.2.1.6
Move the negative in front of the fraction.
Step 2.3.4.2.1.7
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.2.1.8
Combine and .
Step 2.3.4.2.1.9
Combine the numerators over the common denominator.
Step 2.3.4.2.1.10
Combine the numerators over the common denominator.
Step 2.3.4.2.1.11
Multiply by .
Step 2.3.4.2.1.12
Subtract from .
Step 2.3.4.2.1.13
Rewrite as .
Step 2.3.4.2.1.14
Factor out of .
Step 2.3.4.2.1.15
Factor out of .
Step 2.3.4.2.1.16
Move the negative in front of the fraction.
Step 2.3.4.3
Replace all occurrences of in with .
Step 2.3.4.4
Simplify the right side.
Step 2.3.4.4.1
Simplify .
Step 2.3.4.4.1.1
Simplify each term.
Step 2.3.4.4.1.1.1
Apply the distributive property.
Step 2.3.4.4.1.1.2
Multiply .
Step 2.3.4.4.1.1.2.1
Multiply by .
Step 2.3.4.4.1.1.2.2
Multiply by .
Step 2.3.4.4.1.1.3
Multiply .
Step 2.3.4.4.1.1.3.1
Multiply by .
Step 2.3.4.4.1.1.3.2
Multiply by .
Step 2.3.4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.3
Combine and .
Step 2.3.4.4.1.4
Combine the numerators over the common denominator.
Step 2.3.4.4.1.5
Simplify the numerator.
Step 2.3.4.4.1.5.1
Multiply by .
Step 2.3.4.4.1.5.2
Add and .
Step 2.3.4.4.1.6
To write as a fraction with a common denominator, multiply by .
Step 2.3.4.4.1.7
Simplify terms.
Step 2.3.4.4.1.7.1
Combine and .
Step 2.3.4.4.1.7.2
Combine the numerators over the common denominator.
Step 2.3.4.4.1.8
Simplify each term.
Step 2.3.4.4.1.8.1
Simplify the numerator.
Step 2.3.4.4.1.8.1.1
Factor out of .
Step 2.3.4.4.1.8.1.1.1
Factor out of .
Step 2.3.4.4.1.8.1.1.2
Factor out of .
Step 2.3.4.4.1.8.1.1.3
Factor out of .
Step 2.3.4.4.1.8.1.2
Multiply by .
Step 2.3.4.4.1.8.1.3
Subtract from .
Step 2.3.4.4.1.8.2
Multiply by .
Step 2.3.5
Solve for in .
Step 2.3.5.1
Rewrite the equation as .
Step 2.3.5.2
Multiply both sides of the equation by .
Step 2.3.5.3
Simplify both sides of the equation.
Step 2.3.5.3.1
Simplify the left side.
Step 2.3.5.3.1.1
Simplify .
Step 2.3.5.3.1.1.1
Cancel the common factor of .
Step 2.3.5.3.1.1.1.1
Move the leading negative in into the numerator.
Step 2.3.5.3.1.1.1.2
Factor out of .
Step 2.3.5.3.1.1.1.3
Cancel the common factor.
Step 2.3.5.3.1.1.1.4
Rewrite the expression.
Step 2.3.5.3.1.1.2
Multiply.
Step 2.3.5.3.1.1.2.1
Multiply by .
Step 2.3.5.3.1.1.2.2
Multiply by .
Step 2.3.5.3.2
Simplify the right side.
Step 2.3.5.3.2.1
Multiply by .
Step 2.3.5.4
Move all terms not containing to the right side of the equation.
Step 2.3.5.4.1
Subtract from both sides of the equation.
Step 2.3.5.4.2
Subtract from .
Step 2.3.6
Replace all occurrences of with in each equation.
Step 2.3.6.1
Replace all occurrences of in with .
Step 2.3.6.2
Simplify the right side.
Step 2.3.6.2.1
Simplify .
Step 2.3.6.2.1.1
Move the negative in front of the fraction.
Step 2.3.6.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.6.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.3.6.2.1.3.1
Multiply by .
Step 2.3.6.2.1.3.2
Multiply by .
Step 2.3.6.2.1.4
Combine the numerators over the common denominator.
Step 2.3.6.2.1.5
Simplify the numerator.
Step 2.3.6.2.1.5.1
Multiply by .
Step 2.3.6.2.1.5.2
Subtract from .
Step 2.3.6.2.1.6
Cancel the common factor of and .
Step 2.3.6.2.1.6.1
Factor out of .
Step 2.3.6.2.1.6.2
Cancel the common factors.
Step 2.3.6.2.1.6.2.1
Factor out of .
Step 2.3.6.2.1.6.2.2
Cancel the common factor.
Step 2.3.6.2.1.6.2.3
Rewrite the expression.
Step 2.3.6.3
Replace all occurrences of in with .
Step 2.3.6.4
Simplify the right side.
Step 2.3.6.4.1
Simplify .
Step 2.3.6.4.1.1
Simplify each term.
Step 2.3.6.4.1.1.1
Multiply by .
Step 2.3.6.4.1.1.2
Move the negative in front of the fraction.
Step 2.3.6.4.1.1.3
Multiply .
Step 2.3.6.4.1.1.3.1
Multiply by .
Step 2.3.6.4.1.1.3.2
Multiply by .
Step 2.3.6.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.6.4.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.3.6.4.1.3.1
Multiply by .
Step 2.3.6.4.1.3.2
Multiply by .
Step 2.3.6.4.1.4
Combine the numerators over the common denominator.
Step 2.3.6.4.1.5
Simplify the numerator.
Step 2.3.6.4.1.5.1
Multiply by .
Step 2.3.6.4.1.5.2
Add and .
Step 2.3.6.4.1.6
Cancel the common factor of and .
Step 2.3.6.4.1.6.1
Factor out of .
Step 2.3.6.4.1.6.2
Cancel the common factors.
Step 2.3.6.4.1.6.2.1
Factor out of .
Step 2.3.6.4.1.6.2.2
Cancel the common factor.
Step 2.3.6.4.1.6.2.3
Rewrite the expression.
Step 2.3.6.4.1.7
Move the negative in front of the fraction.
Step 2.3.7
List all of the solutions.
Step 2.4
Calculate the value of using each value in the table and compare this value to the given value in the table.
Step 2.4.1
Calculate the value of such that when , , , and .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
One to any power is one.
Step 2.4.1.1.2
Multiply by .
Step 2.4.1.1.3
Multiply by .
Step 2.4.1.2
Combine fractions.
Step 2.4.1.2.1
Combine the numerators over the common denominator.
Step 2.4.1.2.2
Simplify the expression.
Step 2.4.1.2.2.1
Subtract from .
Step 2.4.1.2.2.2
Divide by .
Step 2.4.1.2.2.3
Subtract from .
Step 2.4.2
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.3
Calculate the value of such that when , , , and .
Step 2.4.3.1
Simplify each term.
Step 2.4.3.1.1
Raise to the power of .
Step 2.4.3.1.2
Cancel the common factor of .
Step 2.4.3.1.2.1
Factor out of .
Step 2.4.3.1.2.2
Factor out of .
Step 2.4.3.1.2.3
Cancel the common factor.
Step 2.4.3.1.2.4
Rewrite the expression.
Step 2.4.3.1.3
Combine and .
Step 2.4.3.1.4
Multiply by .
Step 2.4.3.1.5
Cancel the common factor of .
Step 2.4.3.1.5.1
Move the leading negative in into the numerator.
Step 2.4.3.1.5.2
Factor out of .
Step 2.4.3.1.5.3
Cancel the common factor.
Step 2.4.3.1.5.4
Rewrite the expression.
Step 2.4.3.1.6
Move the negative in front of the fraction.
Step 2.4.3.2
Combine fractions.
Step 2.4.3.2.1
Combine the numerators over the common denominator.
Step 2.4.3.2.2
Simplify the expression.
Step 2.4.3.2.2.1
Subtract from .
Step 2.4.3.2.2.2
Divide by .
Step 2.4.3.2.2.3
Add and .
Step 2.4.4
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.5
Calculate the value of such that when , , , and .
Step 2.4.5.1
Simplify each term.
Step 2.4.5.1.1
Raise to the power of .
Step 2.4.5.1.2
Cancel the common factor of .
Step 2.4.5.1.2.1
Factor out of .
Step 2.4.5.1.2.2
Factor out of .
Step 2.4.5.1.2.3
Cancel the common factor.
Step 2.4.5.1.2.4
Rewrite the expression.
Step 2.4.5.1.3
Combine and .
Step 2.4.5.1.4
Multiply by .
Step 2.4.5.1.5
Cancel the common factor of .
Step 2.4.5.1.5.1
Move the leading negative in into the numerator.
Step 2.4.5.1.5.2
Factor out of .
Step 2.4.5.1.5.3
Factor out of .
Step 2.4.5.1.5.4
Cancel the common factor.
Step 2.4.5.1.5.5
Rewrite the expression.
Step 2.4.5.1.6
Combine and .
Step 2.4.5.1.7
Multiply by .
Step 2.4.5.1.8
Move the negative in front of the fraction.
Step 2.4.5.2
Combine fractions.
Step 2.4.5.2.1
Combine the numerators over the common denominator.
Step 2.4.5.2.2
Simplify the expression.
Step 2.4.5.2.2.1
Subtract from .
Step 2.4.5.2.2.2
Divide by .
Step 2.4.5.2.2.3
Add and .
Step 2.4.6
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.7
Since for the corresponding values, the function is quadratic.
The function is quadratic
The function is quadratic
The function is quadratic
Step 3
Since all , the function is quadratic and follows the form .