Algebra Examples

Find the Center 5x^2+9y^2+10x-54y+41
Step 1
Find the standard form of the ellipse.
Tap for more steps...
Step 1.1
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 1.1.1
Subtract from both sides of the equation.
Step 1.1.2
Subtract from both sides of the equation.
Step 1.1.3
Subtract from both sides of the equation.
Step 1.1.4
Add to both sides of the equation.
Step 1.1.5
Add and .
Step 1.2
Complete the square for .
Tap for more steps...
Step 1.2.1
Use the form , to find the values of , , and .
Step 1.2.2
Consider the vertex form of a parabola.
Step 1.2.3
Find the value of using the formula .
Tap for more steps...
Step 1.2.3.1
Substitute the values of and into the formula .
Step 1.2.3.2
Simplify the right side.
Tap for more steps...
Step 1.2.3.2.1
Cancel the common factor of and .
Tap for more steps...
Step 1.2.3.2.1.1
Factor out of .
Step 1.2.3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 1.2.3.2.1.2.1
Factor out of .
Step 1.2.3.2.1.2.2
Cancel the common factor.
Step 1.2.3.2.1.2.3
Rewrite the expression.
Step 1.2.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.2.1
Cancel the common factor.
Step 1.2.3.2.2.2
Rewrite the expression.
Step 1.2.4
Find the value of using the formula .
Tap for more steps...
Step 1.2.4.1
Substitute the values of , and into the formula .
Step 1.2.4.2
Simplify the right side.
Tap for more steps...
Step 1.2.4.2.1
Simplify each term.
Tap for more steps...
Step 1.2.4.2.1.1
Raise to the power of .
Step 1.2.4.2.1.2
Multiply by .
Step 1.2.4.2.1.3
Divide by .
Step 1.2.4.2.1.4
Multiply by .
Step 1.2.4.2.2
Add and .
Step 1.2.5
Substitute the values of , , and into the vertex form .
Step 1.3
Substitute for in the equation .
Step 1.4
Move to the right side of the equation by adding to both sides.
Step 1.5
Complete the square for .
Tap for more steps...
Step 1.5.1
Use the form , to find the values of , , and .
Step 1.5.2
Consider the vertex form of a parabola.
Step 1.5.3
Find the value of using the formula .
Tap for more steps...
Step 1.5.3.1
Substitute the values of and into the formula .
Step 1.5.3.2
Simplify the right side.
Tap for more steps...
Step 1.5.3.2.1
Multiply by .
Step 1.5.3.2.2
Move the negative in front of the fraction.
Step 1.5.4
Find the value of using the formula .
Tap for more steps...
Step 1.5.4.1
Substitute the values of , and into the formula .
Step 1.5.4.2
Simplify the right side.
Tap for more steps...
Step 1.5.4.2.1
Simplify each term.
Tap for more steps...
Step 1.5.4.2.1.1
Raise to the power of .
Step 1.5.4.2.1.2
Multiply by .
Step 1.5.4.2.1.3
Move the negative in front of the fraction.
Step 1.5.4.2.1.4
Multiply .
Tap for more steps...
Step 1.5.4.2.1.4.1
Multiply by .
Step 1.5.4.2.1.4.2
Multiply by .
Step 1.5.4.2.2
Add and .
Step 1.5.5
Substitute the values of , , and into the vertex form .
Step 1.6
Substitute for in the equation .
Step 1.7
Move to the right side of the equation by adding to both sides.
Step 1.8
Simplify .
Tap for more steps...
Step 1.8.1
Find the common denominator.
Tap for more steps...
Step 1.8.1.1
Write as a fraction with denominator .
Step 1.8.1.2
Multiply by .
Step 1.8.1.3
Multiply by .
Step 1.8.1.4
Write as a fraction with denominator .
Step 1.8.1.5
Multiply by .
Step 1.8.1.6
Multiply by .
Step 1.8.2
Combine the numerators over the common denominator.
Step 1.8.3
Simplify each term.
Tap for more steps...
Step 1.8.3.1
Multiply by .
Step 1.8.3.2
Multiply by .
Step 1.8.4
Simplify the expression.
Tap for more steps...
Step 1.8.4.1
Subtract from .
Step 1.8.4.2
Subtract from .
Step 1.8.4.3
Move the negative in front of the fraction.
Step 1.9
Flip the sign on each term of the equation so the term on the right side is positive.
Step 1.10
Divide each term by to make the right side equal to one.
Step 1.11
Simplify each term in the equation in order to set the right side equal to . The standard form of an ellipse or hyperbola requires the right side of the equation be .
Step 2
This is the form of an ellipse. Use this form to determine the values used to find the center along with the major and minor axis of the ellipse.
Step 3
Match the values in this ellipse to those of the standard form. The variable represents the radius of the major axis of the ellipse, represents the radius of the minor axis of the ellipse, represents the x-offset from the origin, and represents the y-offset from the origin.
Step 4
The center of an ellipse follows the form of . Substitute in the values of and .
Step 5