Algebra Examples

Divide Using Long Polynomial Division (15x^5-2x^4+12x^3-4x^2+x-3)÷(3x^3+2x^2+7x-2)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
++--+-+-
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
++--+-+-
Step 3
Multiply the new quotient term by the divisor.
++--+-+-
+++-
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
++--+-+-
---+
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++--+-+-
---+
--+
Step 6
Pull the next terms from the original dividend down into the current dividend.
++--+-+-
---+
--++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
-
++--+-+-
---+
--++
Step 8
Multiply the new quotient term by the divisor.
-
++--+-+-
---+
--++
---+
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
-
++--+-+-
---+
--++
+++-
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
++--+-+-
---+
--++
+++-
-+-
Step 11
Pull the next terms from the original dividend down into the current dividend.
-
++--+-+-
---+
--++
+++-
-+--
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
--
++--+-+-
---+
--++
+++-
-+--
Step 13
Multiply the new quotient term by the divisor.
--
++--+-+-
---+
--++
+++-
-+--
---+
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
--
++--+-+-
---+
--++
+++-
-+--
+++-
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--
++--+-+-
---+
--++
+++-
-+--
+++-
++-
Step 16
The final answer is the quotient plus the remainder over the divisor.