Algebra Examples

Find the Vertical and Horizontal Intercept(s) h(x)=-1/64x^2+13/32x+2
Step 1
Find the x-intercepts.
Tap for more steps...
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Tap for more steps...
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Simplify each term.
Tap for more steps...
Step 1.2.2.1
Combine and .
Step 1.2.2.2
Combine and .
Step 1.2.3
Multiply through by the least common denominator , then simplify.
Tap for more steps...
Step 1.2.3.1
Apply the distributive property.
Step 1.2.3.2
Simplify.
Tap for more steps...
Step 1.2.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.1.1
Move the leading negative in into the numerator.
Step 1.2.3.2.1.2
Cancel the common factor.
Step 1.2.3.2.1.3
Rewrite the expression.
Step 1.2.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.2.1
Factor out of .
Step 1.2.3.2.2.2
Cancel the common factor.
Step 1.2.3.2.2.3
Rewrite the expression.
Step 1.2.3.2.3
Multiply by .
Step 1.2.3.2.4
Multiply by .
Step 1.2.4
Use the quadratic formula to find the solutions.
Step 1.2.5
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.6
Simplify.
Tap for more steps...
Step 1.2.6.1
Simplify the numerator.
Tap for more steps...
Step 1.2.6.1.1
Raise to the power of .
Step 1.2.6.1.2
Multiply .
Tap for more steps...
Step 1.2.6.1.2.1
Multiply by .
Step 1.2.6.1.2.2
Multiply by .
Step 1.2.6.1.3
Add and .
Step 1.2.6.1.4
Rewrite as .
Tap for more steps...
Step 1.2.6.1.4.1
Factor out of .
Step 1.2.6.1.4.2
Rewrite as .
Step 1.2.6.1.5
Pull terms out from under the radical.
Step 1.2.6.2
Multiply by .
Step 1.2.6.3
Simplify .
Step 1.2.7
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.7.1
Simplify the numerator.
Tap for more steps...
Step 1.2.7.1.1
Raise to the power of .
Step 1.2.7.1.2
Multiply .
Tap for more steps...
Step 1.2.7.1.2.1
Multiply by .
Step 1.2.7.1.2.2
Multiply by .
Step 1.2.7.1.3
Add and .
Step 1.2.7.1.4
Rewrite as .
Tap for more steps...
Step 1.2.7.1.4.1
Factor out of .
Step 1.2.7.1.4.2
Rewrite as .
Step 1.2.7.1.5
Pull terms out from under the radical.
Step 1.2.7.2
Multiply by .
Step 1.2.7.3
Simplify .
Step 1.2.7.4
Change the to .
Step 1.2.8
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 1.2.8.1
Simplify the numerator.
Tap for more steps...
Step 1.2.8.1.1
Raise to the power of .
Step 1.2.8.1.2
Multiply .
Tap for more steps...
Step 1.2.8.1.2.1
Multiply by .
Step 1.2.8.1.2.2
Multiply by .
Step 1.2.8.1.3
Add and .
Step 1.2.8.1.4
Rewrite as .
Tap for more steps...
Step 1.2.8.1.4.1
Factor out of .
Step 1.2.8.1.4.2
Rewrite as .
Step 1.2.8.1.5
Pull terms out from under the radical.
Step 1.2.8.2
Multiply by .
Step 1.2.8.3
Simplify .
Step 1.2.8.4
Change the to .
Step 1.2.9
The final answer is the combination of both solutions.
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Find the y-intercepts.
Tap for more steps...
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Tap for more steps...
Step 2.2.1
Remove parentheses.
Step 2.2.2
Multiply by .
Step 2.2.3
Remove parentheses.
Step 2.2.4
Simplify .
Tap for more steps...
Step 2.2.4.1
Simplify each term.
Tap for more steps...
Step 2.2.4.1.1
Raising to any positive power yields .
Step 2.2.4.1.2
Multiply .
Tap for more steps...
Step 2.2.4.1.2.1
Multiply by .
Step 2.2.4.1.2.2
Multiply by .
Step 2.2.4.1.3
Multiply by .
Step 2.2.4.2
Simplify by adding numbers.
Tap for more steps...
Step 2.2.4.2.1
Add and .
Step 2.2.4.2.2
Add and .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4