Enter a problem...
Algebra Examples
Step 1
Differentiate both sides of the equation.
Step 2
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Step 2.2.1
Differentiate using the chain rule, which states that is where and .
Step 2.2.1.1
To apply the Chain Rule, set as .
Step 2.2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2.1.3
Replace all occurrences of with .
Step 2.2.2
Rewrite as .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 3
Step 3.1
Differentiate using the chain rule, which states that is where and .
Step 3.1.1
To apply the Chain Rule, set as .
Step 3.1.2
Differentiate using the Power Rule which states that is where .
Step 3.1.3
Replace all occurrences of with .
Step 3.2
Differentiate.
Step 3.2.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3
Differentiate using the chain rule, which states that is where and .
Step 3.3.1
To apply the Chain Rule, set as .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
Multiply by .
Step 3.5
Rewrite as .
Step 3.6
Since is constant with respect to , the derivative of with respect to is .
Step 3.7
Differentiate using the Power Rule which states that is where .
Step 3.8
Multiply by .
Step 3.9
Since is constant with respect to , the derivative of with respect to is .
Step 3.10
Rewrite as .
Step 3.11
Simplify.
Step 3.11.1
Apply the distributive property.
Step 3.11.2
Combine terms.
Step 3.11.2.1
Multiply by .
Step 3.11.2.2
Multiply by .
Step 3.11.2.3
Multiply by .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 5.2
Simplify .
Step 5.2.1
Rewrite.
Step 5.2.2
Simplify by adding zeros.
Step 5.2.3
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.2.4
Simplify terms.
Step 5.2.4.1
Simplify each term.
Step 5.2.4.1.1
Multiply by by adding the exponents.
Step 5.2.4.1.1.1
Move .
Step 5.2.4.1.1.2
Multiply by .
Step 5.2.4.1.1.2.1
Raise to the power of .
Step 5.2.4.1.1.2.2
Use the power rule to combine exponents.
Step 5.2.4.1.1.3
Add and .
Step 5.2.4.1.2
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.3
Multiply by .
Step 5.2.4.1.4
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.5
Multiply by .
Step 5.2.4.1.6
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.7
Multiply by .
Step 5.2.4.1.8
Multiply by .
Step 5.2.4.1.9
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.10
Multiply by by adding the exponents.
Step 5.2.4.1.10.1
Move .
Step 5.2.4.1.10.2
Multiply by .
Step 5.2.4.1.10.2.1
Raise to the power of .
Step 5.2.4.1.10.2.2
Use the power rule to combine exponents.
Step 5.2.4.1.10.3
Add and .
Step 5.2.4.1.11
Multiply by .
Step 5.2.4.1.12
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.13
Multiply by .
Step 5.2.4.1.14
Multiply by by adding the exponents.
Step 5.2.4.1.14.1
Move .
Step 5.2.4.1.14.2
Multiply by .
Step 5.2.4.1.15
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.16
Multiply by .
Step 5.2.4.1.17
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.18
Multiply by .
Step 5.2.4.1.19
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.20
Multiply by .
Step 5.2.4.2
Subtract from .
Step 5.3
Move all terms containing to the left side of the equation.
Step 5.3.1
Subtract from both sides of the equation.
Step 5.3.2
Combine the opposite terms in .
Step 5.3.2.1
Subtract from .
Step 5.3.2.2
Add and .
Step 5.4
Move all terms not containing to the right side of the equation.
Step 5.4.1
Subtract from both sides of the equation.
Step 5.4.2
Subtract from both sides of the equation.
Step 5.4.3
Add to both sides of the equation.
Step 5.5
Factor out of .
Step 5.5.1
Factor out of .
Step 5.5.2
Factor out of .
Step 5.5.3
Factor out of .
Step 5.5.4
Factor out of .
Step 5.5.5
Factor out of .
Step 5.5.6
Factor out of .
Step 5.5.7
Factor out of .
Step 5.6
Divide each term in by and simplify.
Step 5.6.1
Divide each term in by .
Step 5.6.2
Simplify the left side.
Step 5.6.2.1
Cancel the common factor of .
Step 5.6.2.1.1
Cancel the common factor.
Step 5.6.2.1.2
Rewrite the expression.
Step 5.6.2.2
Cancel the common factor of .
Step 5.6.2.2.1
Cancel the common factor.
Step 5.6.2.2.2
Divide by .
Step 5.6.3
Simplify the right side.
Step 5.6.3.1
Simplify each term.
Step 5.6.3.1.1
Cancel the common factor of and .
Step 5.6.3.1.1.1
Factor out of .
Step 5.6.3.1.1.2
Cancel the common factors.
Step 5.6.3.1.1.2.1
Factor out of .
Step 5.6.3.1.1.2.2
Cancel the common factor.
Step 5.6.3.1.1.2.3
Rewrite the expression.
Step 5.6.3.1.2
Cancel the common factor of and .
Step 5.6.3.1.2.1
Factor out of .
Step 5.6.3.1.2.2
Cancel the common factors.
Step 5.6.3.1.2.2.1
Cancel the common factor.
Step 5.6.3.1.2.2.2
Rewrite the expression.
Step 5.6.3.1.3
Move the negative in front of the fraction.
Step 5.6.3.1.4
Cancel the common factor of and .
Step 5.6.3.1.4.1
Factor out of .
Step 5.6.3.1.4.2
Cancel the common factors.
Step 5.6.3.1.4.2.1
Cancel the common factor.
Step 5.6.3.1.4.2.2
Rewrite the expression.
Step 5.6.3.1.5
Move the negative in front of the fraction.
Step 5.6.3.1.6
Cancel the common factor of and .
Step 5.6.3.1.6.1
Factor out of .
Step 5.6.3.1.6.2
Cancel the common factors.
Step 5.6.3.1.6.2.1
Cancel the common factor.
Step 5.6.3.1.6.2.2
Rewrite the expression.
Step 5.6.3.2
To write as a fraction with a common denominator, multiply by .
Step 5.6.3.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 5.6.3.3.1
Multiply by .
Step 5.6.3.3.2
Reorder the factors of .
Step 5.6.3.4
Combine the numerators over the common denominator.
Step 5.6.3.5
Simplify the numerator.
Step 5.6.3.5.1
Factor out of .
Step 5.6.3.5.1.1
Raise to the power of .
Step 5.6.3.5.1.2
Factor out of .
Step 5.6.3.5.1.3
Factor out of .
Step 5.6.3.5.1.4
Factor out of .
Step 5.6.3.5.2
Multiply by .
Step 5.6.3.6
To write as a fraction with a common denominator, multiply by .
Step 5.6.3.7
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 5.6.3.7.1
Multiply by .
Step 5.6.3.7.2
Reorder the factors of .
Step 5.6.3.8
Combine the numerators over the common denominator.
Step 5.6.3.9
Simplify the numerator.
Step 5.6.3.9.1
Factor out of .
Step 5.6.3.9.1.1
Factor out of .
Step 5.6.3.9.1.2
Factor out of .
Step 5.6.3.9.2
Multiply by .
Step 5.6.3.10
To write as a fraction with a common denominator, multiply by .
Step 5.6.3.11
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 5.6.3.11.1
Multiply by .
Step 5.6.3.11.2
Reorder the factors of .
Step 5.6.3.12
Combine the numerators over the common denominator.
Step 5.6.3.13
Simplify the numerator.
Step 5.6.3.13.1
Factor out of .
Step 5.6.3.13.1.1
Factor out of .
Step 5.6.3.13.1.2
Factor out of .
Step 5.6.3.13.2
Multiply by .
Step 6
Replace with .