Algebra Examples

Find dx/dy x^2+y^2=(2x^2+2y^2-x)^2
Step 1
Differentiate both sides of the equation.
Step 2
Differentiate the left side of the equation.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.1.1
To apply the Chain Rule, set as .
Step 2.2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2.1.3
Replace all occurrences of with .
Step 2.2.2
Rewrite as .
Step 2.3
Differentiate using the Power Rule which states that is where .
Step 3
Differentiate the right side of the equation.
Tap for more steps...
Step 3.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.1.1
To apply the Chain Rule, set as .
Step 3.1.2
Differentiate using the Power Rule which states that is where .
Step 3.1.3
Replace all occurrences of with .
Step 3.2
Differentiate.
Tap for more steps...
Step 3.2.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.1
To apply the Chain Rule, set as .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
Multiply by .
Step 3.5
Rewrite as .
Step 3.6
Since is constant with respect to , the derivative of with respect to is .
Step 3.7
Differentiate using the Power Rule which states that is where .
Step 3.8
Multiply by .
Step 3.9
Since is constant with respect to , the derivative of with respect to is .
Step 3.10
Rewrite as .
Step 3.11
Simplify.
Tap for more steps...
Step 3.11.1
Apply the distributive property.
Step 3.11.2
Combine terms.
Tap for more steps...
Step 3.11.2.1
Multiply by .
Step 3.11.2.2
Multiply by .
Step 3.11.2.3
Multiply by .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Solve for .
Tap for more steps...
Step 5.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 5.2
Simplify .
Tap for more steps...
Step 5.2.1
Rewrite.
Step 5.2.2
Simplify by adding zeros.
Step 5.2.3
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.2.4
Simplify terms.
Tap for more steps...
Step 5.2.4.1
Simplify each term.
Tap for more steps...
Step 5.2.4.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.4.1.1.1
Move .
Step 5.2.4.1.1.2
Multiply by .
Tap for more steps...
Step 5.2.4.1.1.2.1
Raise to the power of .
Step 5.2.4.1.1.2.2
Use the power rule to combine exponents.
Step 5.2.4.1.1.3
Add and .
Step 5.2.4.1.2
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.3
Multiply by .
Step 5.2.4.1.4
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.5
Multiply by .
Step 5.2.4.1.6
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.7
Multiply by .
Step 5.2.4.1.8
Multiply by .
Step 5.2.4.1.9
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.10
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.4.1.10.1
Move .
Step 5.2.4.1.10.2
Multiply by .
Tap for more steps...
Step 5.2.4.1.10.2.1
Raise to the power of .
Step 5.2.4.1.10.2.2
Use the power rule to combine exponents.
Step 5.2.4.1.10.3
Add and .
Step 5.2.4.1.11
Multiply by .
Step 5.2.4.1.12
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.13
Multiply by .
Step 5.2.4.1.14
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.4.1.14.1
Move .
Step 5.2.4.1.14.2
Multiply by .
Step 5.2.4.1.15
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.16
Multiply by .
Step 5.2.4.1.17
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.18
Multiply by .
Step 5.2.4.1.19
Rewrite using the commutative property of multiplication.
Step 5.2.4.1.20
Multiply by .
Step 5.2.4.2
Subtract from .
Step 5.3
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 5.3.1
Subtract from both sides of the equation.
Step 5.3.2
Combine the opposite terms in .
Tap for more steps...
Step 5.3.2.1
Subtract from .
Step 5.3.2.2
Add and .
Step 5.4
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 5.4.1
Subtract from both sides of the equation.
Step 5.4.2
Subtract from both sides of the equation.
Step 5.4.3
Add to both sides of the equation.
Step 5.5
Factor out of .
Tap for more steps...
Step 5.5.1
Factor out of .
Step 5.5.2
Factor out of .
Step 5.5.3
Factor out of .
Step 5.5.4
Factor out of .
Step 5.5.5
Factor out of .
Step 5.5.6
Factor out of .
Step 5.5.7
Factor out of .
Step 5.6
Divide each term in by and simplify.
Tap for more steps...
Step 5.6.1
Divide each term in by .
Step 5.6.2
Simplify the left side.
Tap for more steps...
Step 5.6.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.6.2.1.1
Cancel the common factor.
Step 5.6.2.1.2
Rewrite the expression.
Step 5.6.2.2
Cancel the common factor of .
Tap for more steps...
Step 5.6.2.2.1
Cancel the common factor.
Step 5.6.2.2.2
Divide by .
Step 5.6.3
Simplify the right side.
Tap for more steps...
Step 5.6.3.1
Simplify each term.
Tap for more steps...
Step 5.6.3.1.1
Cancel the common factor of and .
Tap for more steps...
Step 5.6.3.1.1.1
Factor out of .
Step 5.6.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 5.6.3.1.1.2.1
Factor out of .
Step 5.6.3.1.1.2.2
Cancel the common factor.
Step 5.6.3.1.1.2.3
Rewrite the expression.
Step 5.6.3.1.2
Cancel the common factor of and .
Tap for more steps...
Step 5.6.3.1.2.1
Factor out of .
Step 5.6.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 5.6.3.1.2.2.1
Cancel the common factor.
Step 5.6.3.1.2.2.2
Rewrite the expression.
Step 5.6.3.1.3
Move the negative in front of the fraction.
Step 5.6.3.1.4
Cancel the common factor of and .
Tap for more steps...
Step 5.6.3.1.4.1
Factor out of .
Step 5.6.3.1.4.2
Cancel the common factors.
Tap for more steps...
Step 5.6.3.1.4.2.1
Cancel the common factor.
Step 5.6.3.1.4.2.2
Rewrite the expression.
Step 5.6.3.1.5
Move the negative in front of the fraction.
Step 5.6.3.1.6
Cancel the common factor of and .
Tap for more steps...
Step 5.6.3.1.6.1
Factor out of .
Step 5.6.3.1.6.2
Cancel the common factors.
Tap for more steps...
Step 5.6.3.1.6.2.1
Cancel the common factor.
Step 5.6.3.1.6.2.2
Rewrite the expression.
Step 5.6.3.2
To write as a fraction with a common denominator, multiply by .
Step 5.6.3.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 5.6.3.3.1
Multiply by .
Step 5.6.3.3.2
Reorder the factors of .
Step 5.6.3.4
Combine the numerators over the common denominator.
Step 5.6.3.5
Simplify the numerator.
Tap for more steps...
Step 5.6.3.5.1
Factor out of .
Tap for more steps...
Step 5.6.3.5.1.1
Raise to the power of .
Step 5.6.3.5.1.2
Factor out of .
Step 5.6.3.5.1.3
Factor out of .
Step 5.6.3.5.1.4
Factor out of .
Step 5.6.3.5.2
Multiply by .
Step 5.6.3.6
To write as a fraction with a common denominator, multiply by .
Step 5.6.3.7
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 5.6.3.7.1
Multiply by .
Step 5.6.3.7.2
Reorder the factors of .
Step 5.6.3.8
Combine the numerators over the common denominator.
Step 5.6.3.9
Simplify the numerator.
Tap for more steps...
Step 5.6.3.9.1
Factor out of .
Tap for more steps...
Step 5.6.3.9.1.1
Factor out of .
Step 5.6.3.9.1.2
Factor out of .
Step 5.6.3.9.2
Multiply by .
Step 5.6.3.10
To write as a fraction with a common denominator, multiply by .
Step 5.6.3.11
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 5.6.3.11.1
Multiply by .
Step 5.6.3.11.2
Reorder the factors of .
Step 5.6.3.12
Combine the numerators over the common denominator.
Step 5.6.3.13
Simplify the numerator.
Tap for more steps...
Step 5.6.3.13.1
Factor out of .
Tap for more steps...
Step 5.6.3.13.1.1
Factor out of .
Step 5.6.3.13.1.2
Factor out of .
Step 5.6.3.13.2
Multiply by .
Step 6
Replace with .