Enter a problem...
Algebra Examples
Step 1
Differentiate both sides of the equation.
Step 2
The derivative of with respect to is .
Step 3
Step 3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2
Differentiate using the Quotient Rule which states that is where and .
Step 3.3
Multiply the exponents in .
Step 3.3.1
Apply the power rule and multiply exponents, .
Step 3.3.2
Multiply by .
Step 3.4
Differentiate using the chain rule, which states that is where and .
Step 3.4.1
To apply the Chain Rule, set as .
Step 3.4.2
The derivative of with respect to is .
Step 3.4.3
Replace all occurrences of with .
Step 3.5
Differentiate.
Step 3.5.1
Combine and .
Step 3.5.2
By the Sum Rule, the derivative of with respect to is .
Step 3.5.3
Differentiate using the Power Rule which states that is where .
Step 3.5.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.5.5
Simplify the expression.
Step 3.5.5.1
Add and .
Step 3.5.5.2
Multiply by .
Step 3.6
Multiply by .
Step 3.7
Simplify terms.
Step 3.7.1
Combine.
Step 3.7.2
Apply the distributive property.
Step 3.7.3
Cancel the common factor of .
Step 3.7.3.1
Cancel the common factor.
Step 3.7.3.2
Rewrite the expression.
Step 3.8
Differentiate using the Power Rule which states that is where .
Step 3.9
Combine fractions.
Step 3.9.1
Multiply by .
Step 3.9.2
Combine and .
Step 3.10
Simplify.
Step 3.10.1
Apply the distributive property.
Step 3.10.2
Apply the distributive property.
Step 3.10.3
Simplify the numerator.
Step 3.10.3.1
Simplify each term.
Step 3.10.3.1.1
Simplify by moving inside the logarithm.
Step 3.10.3.1.2
Apply the distributive property.
Step 3.10.3.1.3
Rewrite using the commutative property of multiplication.
Step 3.10.3.1.4
Multiply .
Step 3.10.3.1.4.1
Multiply by .
Step 3.10.3.1.4.2
Reorder and .
Step 3.10.3.1.4.3
Simplify by moving inside the logarithm.
Step 3.10.3.1.5
Simplify each term.
Step 3.10.3.1.5.1
Multiply by by adding the exponents.
Step 3.10.3.1.5.1.1
Move .
Step 3.10.3.1.5.1.2
Multiply by .
Step 3.10.3.1.5.2
Multiply the exponents in .
Step 3.10.3.1.5.2.1
Apply the power rule and multiply exponents, .
Step 3.10.3.1.5.2.2
Multiply by .
Step 3.10.3.1.6
Apply the distributive property.
Step 3.10.3.1.7
Multiply .
Step 3.10.3.1.7.1
Multiply by .
Step 3.10.3.1.7.2
Simplify by moving inside the logarithm.
Step 3.10.3.1.8
Multiply .
Step 3.10.3.1.8.1
Multiply by .
Step 3.10.3.1.8.2
Reorder and .
Step 3.10.3.1.8.3
Simplify by moving inside the logarithm.
Step 3.10.3.1.9
Simplify each term.
Step 3.10.3.1.9.1
Rewrite using the commutative property of multiplication.
Step 3.10.3.1.9.2
Multiply the exponents in .
Step 3.10.3.1.9.2.1
Apply the power rule and multiply exponents, .
Step 3.10.3.1.9.2.2
Multiply by .
Step 3.10.3.1.9.3
Multiply the exponents in .
Step 3.10.3.1.9.3.1
Apply the power rule and multiply exponents, .
Step 3.10.3.1.9.3.2
Multiply by .
Step 3.10.3.2
Reorder factors in .
Step 3.10.4
Multiply by by adding the exponents.
Step 3.10.4.1
Multiply by .
Step 3.10.4.1.1
Raise to the power of .
Step 3.10.4.1.2
Use the power rule to combine exponents.
Step 3.10.4.2
Add and .
Step 3.10.5
Factor out of .
Step 3.10.5.1
Factor out of .
Step 3.10.5.2
Factor out of .
Step 3.10.5.3
Factor out of .
Step 3.10.5.4
Factor out of .
Step 3.10.5.5
Factor out of .
Step 3.10.6
Factor out of .
Step 3.10.6.1
Factor out of .
Step 3.10.6.2
Factor out of .
Step 3.10.6.3
Factor out of .
Step 3.10.7
Expand by moving outside the logarithm.
Step 3.10.8
Expand by moving outside the logarithm.
Step 3.10.9
Cancel the common factors.
Step 3.10.9.1
Factor out of .
Step 3.10.9.2
Cancel the common factor.
Step 3.10.9.3
Rewrite the expression.
Step 3.10.10
Simplify the numerator.
Step 3.10.10.1
Multiply by .
Step 3.10.10.2
Multiply by .
Step 3.10.10.3
Factor out of .
Step 3.10.10.3.1
Factor out of .
Step 3.10.10.3.2
Factor out of .
Step 3.10.10.3.3
Factor out of .
Step 3.10.10.3.4
Factor out of .
Step 3.10.10.3.5
Factor out of .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Replace with .