Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3
Subtract from both sides of the equation.
Step 4
Step 4.1
Combine and .
Step 4.2
Use the form , to find the values of , , and .
Step 4.3
Consider the vertex form of a parabola.
Step 4.4
Find the value of using the formula .
Step 4.4.1
Substitute the values of and into the formula .
Step 4.4.2
Simplify the right side.
Step 4.4.2.1
Cancel the common factor of and .
Step 4.4.2.1.1
Factor out of .
Step 4.4.2.1.2
Cancel the common factors.
Step 4.4.2.1.2.1
Cancel the common factor.
Step 4.4.2.1.2.2
Rewrite the expression.
Step 4.4.2.2
Multiply the numerator by the reciprocal of the denominator.
Step 4.4.2.3
Multiply by .
Step 4.5
Find the value of using the formula .
Step 4.5.1
Substitute the values of , and into the formula .
Step 4.5.2
Simplify the right side.
Step 4.5.2.1
Simplify each term.
Step 4.5.2.1.1
Raise to the power of .
Step 4.5.2.1.2
Combine and .
Step 4.5.2.1.3
Cancel the common factor of and .
Step 4.5.2.1.3.1
Factor out of .
Step 4.5.2.1.3.2
Cancel the common factors.
Step 4.5.2.1.3.2.1
Factor out of .
Step 4.5.2.1.3.2.2
Cancel the common factor.
Step 4.5.2.1.3.2.3
Rewrite the expression.
Step 4.5.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 4.5.2.1.5
Multiply .
Step 4.5.2.1.5.1
Multiply by .
Step 4.5.2.1.5.2
Multiply by .
Step 4.5.2.2
Subtract from .
Step 4.6
Substitute the values of , , and into the vertex form .
Step 5
Step 5.1
Add to both sides of the equation.
Step 5.2
Add and .
Step 6
Step 6.1
Multiply each term in by .
Step 6.2
Simplify the left side.
Step 6.2.1
Combine and .
Step 6.2.2
Cancel the common factor of .
Step 6.2.2.1
Cancel the common factor.
Step 6.2.2.2
Rewrite the expression.
Step 6.3
Simplify the right side.
Step 6.3.1
Simplify each term.
Step 6.3.1.1
Move to the left of .
Step 6.3.1.2
Multiply by .
Step 7
Step 7.1
Factor out of .
Step 7.2
Factor out of .
Step 7.3
Factor out of .