Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Divide both sides of the equation by .
Step 3
Step 3.1
Use the form , to find the values of , , and .
Step 3.2
Consider the vertex form of a parabola.
Step 3.3
Find the value of using the formula .
Step 3.3.1
Substitute the values of and into the formula .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Multiply the numerator by the reciprocal of the denominator.
Step 3.3.2.2
Cancel the common factor of .
Step 3.3.2.2.1
Cancel the common factor.
Step 3.3.2.2.2
Rewrite the expression.
Step 3.3.2.3
Multiply .
Step 3.3.2.3.1
Multiply by .
Step 3.3.2.3.2
Multiply by .
Step 3.4
Find the value of using the formula .
Step 3.4.1
Substitute the values of , and into the formula .
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify each term.
Step 3.4.2.1.1
Simplify the numerator.
Step 3.4.2.1.1.1
Apply the product rule to .
Step 3.4.2.1.1.2
One to any power is one.
Step 3.4.2.1.1.3
Raise to the power of .
Step 3.4.2.1.2
Multiply by .
Step 3.4.2.1.3
Multiply the numerator by the reciprocal of the denominator.
Step 3.4.2.1.4
Multiply .
Step 3.4.2.1.4.1
Multiply by .
Step 3.4.2.1.4.2
Multiply by .
Step 3.4.2.2
Subtract from .
Step 3.5
Substitute the values of , , and into the vertex form .
Step 4
Substitute for in the equation .
Step 5
Move to the right side of the equation by adding to both sides.
Step 6
Step 6.1
Use the form , to find the values of , , and .
Step 6.2
Consider the vertex form of a parabola.
Step 6.3
Find the value of using the formula .
Step 6.3.1
Substitute the values of and into the formula .
Step 6.3.2
Simplify the right side.
Step 6.3.2.1
Multiply the numerator by the reciprocal of the denominator.
Step 6.3.2.2
Cancel the common factor of .
Step 6.3.2.2.1
Factor out of .
Step 6.3.2.2.2
Factor out of .
Step 6.3.2.2.3
Cancel the common factor.
Step 6.3.2.2.4
Rewrite the expression.
Step 6.4
Find the value of using the formula .
Step 6.4.1
Substitute the values of , and into the formula .
Step 6.4.2
Simplify the right side.
Step 6.4.2.1
Simplify each term.
Step 6.4.2.1.1
Simplify the numerator.
Step 6.4.2.1.1.1
Apply the product rule to .
Step 6.4.2.1.1.2
Raise to the power of .
Step 6.4.2.1.1.3
Raise to the power of .
Step 6.4.2.1.2
Multiply by .
Step 6.4.2.1.3
Multiply the numerator by the reciprocal of the denominator.
Step 6.4.2.1.4
Cancel the common factor of .
Step 6.4.2.1.4.1
Factor out of .
Step 6.4.2.1.4.2
Cancel the common factor.
Step 6.4.2.1.4.3
Rewrite the expression.
Step 6.4.2.2
Subtract from .
Step 6.5
Substitute the values of , , and into the vertex form .
Step 7
Substitute for in the equation .
Step 8
Move to the right side of the equation by adding to both sides.
Step 9
Step 9.1
Find the common denominator.
Step 9.1.1
Multiply by .
Step 9.1.2
Multiply by .
Step 9.1.3
Multiply by .
Step 9.1.4
Multiply by .
Step 9.1.5
Reorder the factors of .
Step 9.1.6
Multiply by .
Step 9.1.7
Multiply by .
Step 9.2
Combine the numerators over the common denominator.
Step 9.3
Simplify the expression.
Step 9.3.1
Multiply by .
Step 9.3.2
Add and .
Step 9.3.3
Add and .
Step 9.4
Cancel the common factor of and .
Step 9.4.1
Factor out of .
Step 9.4.2
Cancel the common factors.
Step 9.4.2.1
Factor out of .
Step 9.4.2.2
Cancel the common factor.
Step 9.4.2.3
Rewrite the expression.