Enter a problem...
Algebra Examples
,
Step 1
Set up the composite result function.
Step 2
Evaluate by substituting in the value of into .
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Use the Binomial Theorem.
Step 3.1.2
Simplify each term.
Step 3.1.2.1
Raise to the power of .
Step 3.1.2.2
Raise to the power of .
Step 3.1.2.3
Multiply by .
Step 3.1.2.4
Multiply by .
Step 3.1.2.5
Multiply by .
Step 3.1.2.6
Apply the product rule to .
Step 3.1.2.7
Raise to the power of .
Step 3.1.2.8
Multiply by .
Step 3.1.2.9
Apply the product rule to .
Step 3.1.2.10
Raise to the power of .
Step 3.1.3
Rewrite as .
Step 3.1.4
Expand using the FOIL Method.
Step 3.1.4.1
Apply the distributive property.
Step 3.1.4.2
Apply the distributive property.
Step 3.1.4.3
Apply the distributive property.
Step 3.1.5
Simplify and combine like terms.
Step 3.1.5.1
Simplify each term.
Step 3.1.5.1.1
Multiply by .
Step 3.1.5.1.2
Multiply by .
Step 3.1.5.1.3
Multiply by .
Step 3.1.5.1.4
Rewrite using the commutative property of multiplication.
Step 3.1.5.1.5
Multiply by by adding the exponents.
Step 3.1.5.1.5.1
Move .
Step 3.1.5.1.5.2
Multiply by .
Step 3.1.5.1.6
Multiply by .
Step 3.1.5.2
Subtract from .
Step 3.1.6
Apply the distributive property.
Step 3.1.7
Simplify.
Step 3.1.7.1
Multiply by .
Step 3.1.7.2
Multiply by .
Step 3.1.7.3
Multiply by .
Step 3.1.8
Apply the distributive property.
Step 3.1.9
Multiply by .
Step 3.1.10
Multiply by .
Step 3.2
Subtract from .
Step 3.3
Add and .
Step 3.4
Subtract from .
Step 3.5
Add and .
Step 3.6
Subtract from .
Step 3.7
Subtract from .
Step 3.8
Apply the distributive property.
Step 3.9
Simplify.
Step 3.9.1
Multiply by .
Step 3.9.2
Multiply by .
Step 3.9.3
Multiply by .
Step 3.9.4
Multiply by .
Step 4
Step 4.1
Subtract from .
Step 4.2
Reorder and .