Algebra Examples

Divide Using Long Polynomial Division (x^5+15x^4+54x^3-25x^2-75x-34)÷(x+8)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+++---
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
+++---
Step 3
Multiply the new quotient term by the divisor.
+++---
++
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
+++---
--
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+++---
--
+
Step 6
Pull the next terms from the original dividend down into the current dividend.
+++---
--
++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
+
+++---
--
++
Step 8
Multiply the new quotient term by the divisor.
+
+++---
--
++
++
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
+
+++---
--
++
--
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
+++---
--
++
--
-
Step 11
Pull the next terms from the original dividend down into the current dividend.
+
+++---
--
++
--
--
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
+-
+++---
--
++
--
--
Step 13
Multiply the new quotient term by the divisor.
+-
+++---
--
++
--
--
--
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
+-
+++---
--
++
--
--
++
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-
+++---
--
++
--
--
++
-
Step 16
Pull the next terms from the original dividend down into the current dividend.
+-
+++---
--
++
--
--
++
--
Step 17
Divide the highest order term in the dividend by the highest order term in divisor .
+--
+++---
--
++
--
--
++
--
Step 18
Multiply the new quotient term by the divisor.
+--
+++---
--
++
--
--
++
--
--
Step 19
The expression needs to be subtracted from the dividend, so change all the signs in
+--
+++---
--
++
--
--
++
--
++
Step 20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+--
+++---
--
++
--
--
++
--
++
-
Step 21
Pull the next terms from the original dividend down into the current dividend.
+--
+++---
--
++
--
--
++
--
++
--
Step 22
Divide the highest order term in the dividend by the highest order term in divisor .
+---
+++---
--
++
--
--
++
--
++
--
Step 23
Multiply the new quotient term by the divisor.
+---
+++---
--
++
--
--
++
--
++
--
--
Step 24
The expression needs to be subtracted from the dividend, so change all the signs in
+---
+++---
--
++
--
--
++
--
++
--
++
Step 25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+---
+++---
--
++
--
--
++
--
++
--
++
-
Step 26
The final answer is the quotient plus the remainder over the divisor.