Algebra Examples

Divide Using Long Polynomial Division (5x^3-14-20x+x^4)÷(x^2-x-3)
Step 1
Expand .
Tap for more steps...
Step 1.1
Move .
Step 1.2
Move .
Step 1.3
Move .
Step 1.4
Reorder and .
Step 2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
--++--
Step 3
Divide the highest order term in the dividend by the highest order term in divisor .
--++--
Step 4
Multiply the new quotient term by the divisor.
--++--
+--
Step 5
The expression needs to be subtracted from the dividend, so change all the signs in
--++--
-++
Step 6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--++--
-++
++
Step 7
Pull the next terms from the original dividend down into the current dividend.
--++--
-++
++-
Step 8
Divide the highest order term in the dividend by the highest order term in divisor .
+
--++--
-++
++-
Step 9
Multiply the new quotient term by the divisor.
+
--++--
-++
++-
+--
Step 10
The expression needs to be subtracted from the dividend, so change all the signs in
+
--++--
-++
++-
-++
Step 11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
--++--
-++
++-
-++
+-
Step 12
Pull the next terms from the original dividend down into the current dividend.
+
--++--
-++
++-
-++
+--
Step 13
Divide the highest order term in the dividend by the highest order term in divisor .
++
--++--
-++
++-
-++
+--
Step 14
Multiply the new quotient term by the divisor.
++
--++--
-++
++-
-++
+--
+--
Step 15
The expression needs to be subtracted from the dividend, so change all the signs in
++
--++--
-++
++-
-++
+--
-++
Step 16
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++
--++--
-++
++-
-++
+--
-++
++
Step 17
The final answer is the quotient plus the remainder over the divisor.