Algebra Examples

Divide Using Long Polynomial Division (r^4-r^2+4)/(r^2-r+2)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-++-++
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
-++-++
Step 3
Multiply the new quotient term by the divisor.
-++-++
+-+
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
-++-++
-+-
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++-++
-+-
+-
Step 6
Pull the next terms from the original dividend down into the current dividend.
-++-++
-+-
+-+
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
+
-++-++
-+-
+-+
Step 8
Multiply the new quotient term by the divisor.
+
-++-++
-+-
+-+
+-+
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
+
-++-++
-+-
+-+
-+-
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
-++-++
-+-
+-+
-+-
--
Step 11
Pull the next terms from the original dividend down into the current dividend.
+
-++-++
-+-
+-+
-+-
--+
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
+-
-++-++
-+-
+-+
-+-
--+
Step 13
Multiply the new quotient term by the divisor.
+-
-++-++
-+-
+-+
-+-
--+
-+-
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
+-
-++-++
-+-
+-+
-+-
--+
+-+
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-
-++-++
-+-
+-+
-+-
--+
+-+
-+
Step 16
The final answer is the quotient plus the remainder over the divisor.