Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Multiply the equation by .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Apply the distributive property.
Step 2.2.1.2
Rewrite as .
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify .
Step 2.3.1.1
Multiply by .
Step 2.3.1.2
Cancel the common factor of .
Step 2.3.1.2.1
Cancel the common factor.
Step 2.3.1.2.2
Divide by .
Step 2.4
Solve for .
Step 2.4.1
Subtract from both sides of the equation.
Step 2.4.2
Add to both sides of the equation.
Step 2.4.3
Factor out of .
Step 2.4.3.1
Factor out of .
Step 2.4.3.2
Factor out of .
Step 2.4.3.3
Factor out of .
Step 2.4.4
Divide each term in by and simplify.
Step 2.4.4.1
Divide each term in by .
Step 2.4.4.2
Simplify the left side.
Step 2.4.4.2.1
Cancel the common factor of .
Step 2.4.4.2.1.1
Cancel the common factor.
Step 2.4.4.2.1.2
Divide by .
Step 2.4.4.3
Simplify the right side.
Step 2.4.4.3.1
Combine the numerators over the common denominator.
Step 2.4.4.3.2
Factor out of .
Step 2.4.4.3.3
Rewrite as .
Step 2.4.4.3.4
Factor out of .
Step 2.4.4.3.5
Rewrite negatives.
Step 2.4.4.3.5.1
Rewrite as .
Step 2.4.4.3.5.2
Move the negative in front of the fraction.
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Remove parentheses.
Step 4.2.4
Simplify the numerator.
Step 4.2.4.1
To write as a fraction with a common denominator, multiply by .
Step 4.2.4.2
Combine the numerators over the common denominator.
Step 4.2.4.3
Reorder terms.
Step 4.2.4.4
Rewrite in a factored form.
Step 4.2.4.4.1
Apply the distributive property.
Step 4.2.4.4.2
Multiply by .
Step 4.2.4.4.3
Multiply by .
Step 4.2.4.4.4
Subtract from .
Step 4.2.4.4.5
Add and .
Step 4.2.4.4.6
Add and .
Step 4.2.4.5
Move the negative in front of the fraction.
Step 4.2.5
Simplify the denominator.
Step 4.2.5.1
Combine and .
Step 4.2.5.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.5.3
Combine the numerators over the common denominator.
Step 4.2.5.4
Reorder terms.
Step 4.2.5.5
Rewrite in a factored form.
Step 4.2.5.5.1
Apply the distributive property.
Step 4.2.5.5.2
Multiply by .
Step 4.2.5.5.3
Multiply by .
Step 4.2.5.5.4
Apply the distributive property.
Step 4.2.5.5.5
Multiply by .
Step 4.2.5.5.6
Multiply by .
Step 4.2.5.5.7
Add and .
Step 4.2.5.5.8
Subtract from .
Step 4.2.5.5.9
Add and .
Step 4.2.6
Multiply the numerator by the reciprocal of the denominator.
Step 4.2.7
Cancel the common factor of .
Step 4.2.7.1
Move the leading negative in into the numerator.
Step 4.2.7.2
Factor out of .
Step 4.2.7.3
Cancel the common factor.
Step 4.2.7.4
Rewrite the expression.
Step 4.2.8
Move the negative in front of the fraction.
Step 4.2.9
Apply the distributive property.
Step 4.2.10
Multiply .
Step 4.2.10.1
Multiply by .
Step 4.2.10.2
Combine and .
Step 4.2.10.3
Combine and .
Step 4.2.10.4
Raise to the power of .
Step 4.2.10.5
Raise to the power of .
Step 4.2.10.6
Use the power rule to combine exponents.
Step 4.2.10.7
Add and .
Step 4.2.11
Multiply .
Step 4.2.11.1
Multiply by .
Step 4.2.11.2
Multiply by .
Step 4.2.12
Combine the numerators over the common denominator.
Step 4.2.13
Factor out of .
Step 4.2.13.1
Factor out of .
Step 4.2.13.2
Raise to the power of .
Step 4.2.13.3
Factor out of .
Step 4.2.13.4
Factor out of .
Step 4.2.14
Cancel the common factor of and .
Step 4.2.14.1
Factor out of .
Step 4.2.14.2
Rewrite as .
Step 4.2.14.3
Factor out of .
Step 4.2.14.4
Rewrite as .
Step 4.2.14.5
Cancel the common factor.
Step 4.2.14.6
Divide by .
Step 4.2.15
Simplify the expression.
Step 4.2.15.1
Move to the left of .
Step 4.2.15.2
Rewrite as .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify the numerator.
Step 4.3.3.1
Multiply .
Step 4.3.3.1.1
Multiply by .
Step 4.3.3.1.2
Combine and .
Step 4.3.3.2
Move the negative in front of the fraction.
Step 4.3.3.3
To write as a fraction with a common denominator, multiply by .
Step 4.3.3.4
Combine the numerators over the common denominator.
Step 4.3.3.5
Reorder terms.
Step 4.3.3.6
Rewrite in a factored form.
Step 4.3.3.6.1
Apply the distributive property.
Step 4.3.3.6.2
Multiply by .
Step 4.3.3.6.3
Multiply by .
Step 4.3.3.6.4
Apply the distributive property.
Step 4.3.3.6.5
Multiply by .
Step 4.3.3.6.6
Subtract from .
Step 4.3.3.6.7
Subtract from .
Step 4.3.3.6.8
Add and .
Step 4.3.4
Simplify the denominator.
Step 4.3.4.1
Factor out of .
Step 4.3.4.1.1
Reorder and .
Step 4.3.4.1.2
Factor out of .
Step 4.3.4.1.3
Rewrite as .
Step 4.3.4.1.4
Factor out of .
Step 4.3.4.2
Combine and .
Step 4.3.4.3
Move the negative in front of the fraction.
Step 4.3.4.4
Write as a fraction with a common denominator.
Step 4.3.4.5
Combine the numerators over the common denominator.
Step 4.3.4.6
Reorder terms.
Step 4.3.4.7
Rewrite in a factored form.
Step 4.3.4.7.1
Apply the distributive property.
Step 4.3.4.7.2
Multiply by .
Step 4.3.4.7.3
Subtract from .
Step 4.3.4.7.4
Add and .
Step 4.3.4.7.5
Subtract from .
Step 4.3.4.8
Move the negative in front of the fraction.
Step 4.3.4.9
Combine exponents.
Step 4.3.4.9.1
Factor out negative.
Step 4.3.4.9.2
Multiply by .
Step 4.3.4.9.3
Multiply by .
Step 4.3.5
Multiply the numerator by the reciprocal of the denominator.
Step 4.3.6
Cancel the common factor of .
Step 4.3.6.1
Factor out of .
Step 4.3.6.2
Cancel the common factor.
Step 4.3.6.3
Rewrite the expression.
Step 4.3.7
Cancel the common factor of .
Step 4.3.7.1
Cancel the common factor.
Step 4.3.7.2
Rewrite the expression.
Step 4.4
Since and , then is the inverse of .