Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Add to both sides of the equation.
Step 2.3
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 2.4
Simplify each side of the equation.
Step 2.4.1
Use to rewrite as .
Step 2.4.2
Simplify the left side.
Step 2.4.2.1
Simplify .
Step 2.4.2.1.1
Multiply the exponents in .
Step 2.4.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.4.2.1.1.2
Cancel the common factor of .
Step 2.4.2.1.1.2.1
Cancel the common factor.
Step 2.4.2.1.1.2.2
Rewrite the expression.
Step 2.4.2.1.2
Simplify.
Step 2.4.3
Simplify the right side.
Step 2.4.3.1
Simplify .
Step 2.4.3.1.1
Use the Binomial Theorem.
Step 2.4.3.1.2
Simplify each term.
Step 2.4.3.1.2.1
Multiply by .
Step 2.4.3.1.2.2
Raise to the power of .
Step 2.4.3.1.2.3
Multiply by .
Step 2.4.3.1.2.4
Raise to the power of .
Step 2.5
Solve for .
Step 2.5.1
Move all terms not containing to the right side of the equation.
Step 2.5.1.1
Add to both sides of the equation.
Step 2.5.1.2
Add and .
Step 2.5.2
Divide each term in by and simplify.
Step 2.5.2.1
Divide each term in by .
Step 2.5.2.2
Simplify the left side.
Step 2.5.2.2.1
Cancel the common factor of .
Step 2.5.2.2.1.1
Cancel the common factor.
Step 2.5.2.2.1.2
Divide by .
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Combine the numerators over the common denominator.
Step 4.2.4
Simplify each term.
Step 4.2.4.1
Factor out of .
Step 4.2.4.1.1
Factor out of .
Step 4.2.4.1.2
Factor out of .
Step 4.2.4.1.3
Factor out of .
Step 4.2.4.2
Use the Binomial Theorem.
Step 4.2.4.3
Simplify each term.
Step 4.2.4.3.1
Rewrite as .
Step 4.2.4.3.1.1
Use to rewrite as .
Step 4.2.4.3.1.2
Apply the power rule and multiply exponents, .
Step 4.2.4.3.1.3
Combine and .
Step 4.2.4.3.1.4
Cancel the common factor of .
Step 4.2.4.3.1.4.1
Cancel the common factor.
Step 4.2.4.3.1.4.2
Rewrite the expression.
Step 4.2.4.3.1.5
Simplify.
Step 4.2.4.3.2
Apply the distributive property.
Step 4.2.4.3.3
Multiply by .
Step 4.2.4.3.4
Rewrite as .
Step 4.2.4.3.5
Apply the product rule to .
Step 4.2.4.3.6
Raise to the power of .
Step 4.2.4.3.7
Multiply by .
Step 4.2.4.3.8
Raise to the power of .
Step 4.2.4.3.9
Multiply by .
Step 4.2.4.3.10
Raise to the power of .
Step 4.2.4.4
Subtract from .
Step 4.2.4.5
Factor out of .
Step 4.2.4.5.1
Factor out of .
Step 4.2.4.5.2
Factor out of .
Step 4.2.4.5.3
Factor out of .
Step 4.2.4.6
Rewrite as .
Step 4.2.4.7
Expand using the FOIL Method.
Step 4.2.4.7.1
Apply the distributive property.
Step 4.2.4.7.2
Apply the distributive property.
Step 4.2.4.7.3
Apply the distributive property.
Step 4.2.4.8
Simplify and combine like terms.
Step 4.2.4.8.1
Simplify each term.
Step 4.2.4.8.1.1
Multiply .
Step 4.2.4.8.1.1.1
Raise to the power of .
Step 4.2.4.8.1.1.2
Raise to the power of .
Step 4.2.4.8.1.1.3
Use the power rule to combine exponents.
Step 4.2.4.8.1.1.4
Add and .
Step 4.2.4.8.1.2
Rewrite as .
Step 4.2.4.8.1.3
Apply the product rule to .
Step 4.2.4.8.1.4
Raise to the power of .
Step 4.2.4.8.1.5
Move to the left of .
Step 4.2.4.8.1.6
Multiply by .
Step 4.2.4.8.2
Subtract from .
Step 4.2.4.9
Apply the distributive property.
Step 4.2.4.10
Simplify.
Step 4.2.4.10.1
Multiply by .
Step 4.2.4.10.2
Multiply by .
Step 4.2.4.11
Factor out of .
Step 4.2.4.11.1
Factor out of .
Step 4.2.4.11.2
Factor out of .
Step 4.2.4.11.3
Factor out of .
Step 4.2.4.12
Apply the distributive property.
Step 4.2.4.13
Multiply by .
Step 4.2.5
Simplify terms.
Step 4.2.5.1
Combine the opposite terms in .
Step 4.2.5.1.1
Add and .
Step 4.2.5.1.2
Add and .
Step 4.2.5.1.3
Subtract from .
Step 4.2.5.1.4
Add and .
Step 4.2.5.1.5
Add and .
Step 4.2.5.1.6
Add and .
Step 4.2.5.2
Subtract from .
Step 4.2.5.3
Combine the opposite terms in .
Step 4.2.5.3.1
Add and .
Step 4.2.5.3.2
Add and .
Step 4.2.5.4
Cancel the common factor of .
Step 4.2.5.4.1
Cancel the common factor.
Step 4.2.5.4.2
Divide by .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify each term.
Step 4.3.3.1
Factor out of .
Step 4.3.3.1.1
Factor out of .
Step 4.3.3.1.2
Factor out of .
Step 4.3.3.2
To write as a fraction with a common denominator, multiply by .
Step 4.3.3.3
Combine and .
Step 4.3.3.4
Combine the numerators over the common denominator.
Step 4.3.3.5
Simplify the numerator.
Step 4.3.3.5.1
Multiply by .
Step 4.3.3.5.2
Subtract from .
Step 4.3.3.6
Combine the numerators over the common denominator.
Step 4.3.3.7
Combine and .
Step 4.3.3.8
Reduce the expression by cancelling the common factors.
Step 4.3.3.8.1
Reduce the expression by cancelling the common factors.
Step 4.3.3.8.1.1
Cancel the common factor.
Step 4.3.3.8.1.2
Rewrite the expression.
Step 4.3.3.8.2
Divide by .
Step 4.3.3.9
Make each term match the terms from the binomial theorem formula.
Step 4.3.3.10
Factor using the binomial theorem.
Step 4.3.3.11
Pull terms out from under the radical, assuming real numbers.
Step 4.3.4
Combine the opposite terms in .
Step 4.3.4.1
Subtract from .
Step 4.3.4.2
Add and .
Step 4.4
Since and , then is the inverse of .