Enter a problem...
Algebra Examples
Step 1
Use the Binomial Theorem.
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Multiply by .
Step 2.1.2
Raise to the power of .
Step 2.1.3
Multiply by .
Step 2.1.4
Raise to the power of .
Step 2.1.5
Multiply by .
Step 2.1.6
Raise to the power of .
Step 2.2
Rewrite as .
Step 3
Step 3.1
Apply the distributive property.
Step 3.2
Apply the distributive property.
Step 3.3
Apply the distributive property.
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply by .
Step 4.1.2
Move to the left of .
Step 4.1.3
Multiply by .
Step 4.2
Add and .
Step 5
Expand by multiplying each term in the first expression by each term in the second expression.
Step 6
Step 6.1
Simplify each term.
Step 6.1.1
Multiply by by adding the exponents.
Step 6.1.1.1
Use the power rule to combine exponents.
Step 6.1.1.2
Add and .
Step 6.1.2
Rewrite using the commutative property of multiplication.
Step 6.1.3
Multiply by by adding the exponents.
Step 6.1.3.1
Move .
Step 6.1.3.2
Multiply by .
Step 6.1.3.2.1
Raise to the power of .
Step 6.1.3.2.2
Use the power rule to combine exponents.
Step 6.1.3.3
Add and .
Step 6.1.4
Move to the left of .
Step 6.1.5
Multiply by by adding the exponents.
Step 6.1.5.1
Move .
Step 6.1.5.2
Use the power rule to combine exponents.
Step 6.1.5.3
Add and .
Step 6.1.6
Rewrite using the commutative property of multiplication.
Step 6.1.7
Multiply by by adding the exponents.
Step 6.1.7.1
Move .
Step 6.1.7.2
Multiply by .
Step 6.1.7.2.1
Raise to the power of .
Step 6.1.7.2.2
Use the power rule to combine exponents.
Step 6.1.7.3
Add and .
Step 6.1.8
Multiply by .
Step 6.1.9
Multiply by .
Step 6.1.10
Multiply by by adding the exponents.
Step 6.1.10.1
Move .
Step 6.1.10.2
Use the power rule to combine exponents.
Step 6.1.10.3
Add and .
Step 6.1.11
Rewrite using the commutative property of multiplication.
Step 6.1.12
Multiply by by adding the exponents.
Step 6.1.12.1
Move .
Step 6.1.12.2
Multiply by .
Step 6.1.12.2.1
Raise to the power of .
Step 6.1.12.2.2
Use the power rule to combine exponents.
Step 6.1.12.3
Add and .
Step 6.1.13
Multiply by .
Step 6.1.14
Multiply by .
Step 6.1.15
Multiply by by adding the exponents.
Step 6.1.15.1
Move .
Step 6.1.15.2
Multiply by .
Step 6.1.15.2.1
Raise to the power of .
Step 6.1.15.2.2
Use the power rule to combine exponents.
Step 6.1.15.3
Add and .
Step 6.1.16
Rewrite using the commutative property of multiplication.
Step 6.1.17
Multiply by by adding the exponents.
Step 6.1.17.1
Move .
Step 6.1.17.2
Multiply by .
Step 6.1.18
Multiply by .
Step 6.1.19
Multiply by .
Step 6.1.20
Multiply by .
Step 6.1.21
Multiply by .
Step 6.2
Simplify by adding terms.
Step 6.2.1
Combine the opposite terms in .
Step 6.2.1.1
Subtract from .
Step 6.2.1.2
Add and .
Step 6.2.2
Subtract from .
Step 6.2.3
Add and .
Step 6.2.4
Add and .
Step 6.2.5
Subtract from .
Step 6.2.6
Subtract from .
Step 6.2.7
Add and .
Step 6.2.8
Add and .
Step 7
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 8
Find every combination of . These are the possible roots of the polynomial function.
Step 9
Substitute the possible roots one by one into the polynomial to find the actual roots. Simplify to check if the value is , which means it is a root.
Step 10
Step 10.1
Simplify each term.
Step 10.1.1
Raise to the power of .
Step 10.1.2
Raise to the power of .
Step 10.1.3
Multiply by .
Step 10.1.4
Raise to the power of .
Step 10.1.5
Multiply by .
Step 10.1.6
Raise to the power of .
Step 10.1.7
Multiply by .
Step 10.1.8
Multiply by .
Step 10.2
Simplify by adding and subtracting.
Step 10.2.1
Subtract from .
Step 10.2.2
Add and .
Step 10.2.3
Add and .
Step 10.2.4
Subtract from .
Step 10.2.5
Add and .
Step 11
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 12
Step 12.1
Place the numbers representing the divisor and the dividend into a division-like configuration.
Step 12.2
The first number in the dividend is put into the first position of the result area (below the horizontal line).
Step 12.3
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 12.4
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 12.5
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 12.6
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 12.7
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 12.8
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 12.9
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 12.10
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 12.11
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 12.12
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 12.13
Multiply the newest entry in the result by the divisor and place the result of under the next term in the dividend .
Step 12.14
Add the product of the multiplication and the number from the dividend and put the result in the next position on the result line.
Step 12.15
All numbers except the last become the coefficients of the quotient polynomial. The last value in the result line is the remainder.
Step 12.16
Simplify the quotient polynomial.
Step 13
Step 13.1
Factor the left side of the equation.
Step 13.1.1
Regroup terms.
Step 13.1.2
Factor out of .
Step 13.1.2.1
Factor out of .
Step 13.1.2.2
Factor out of .
Step 13.1.2.3
Factor out of .
Step 13.1.3
Rewrite as .
Step 13.1.4
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 13.1.5
Factor.
Step 13.1.5.1
Simplify.
Step 13.1.5.1.1
Move to the left of .
Step 13.1.5.1.2
Raise to the power of .
Step 13.1.5.2
Remove unnecessary parentheses.
Step 13.1.6
Factor out of .
Step 13.1.6.1
Factor out of .
Step 13.1.6.2
Factor out of .
Step 13.1.6.3
Factor out of .
Step 13.1.6.4
Factor out of .
Step 13.1.6.5
Factor out of .
Step 13.1.6.6
Factor out of .
Step 13.1.6.7
Factor out of .
Step 13.1.7
Factor.
Step 13.1.7.1
Factor using the rational roots test.
Step 13.1.7.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 13.1.7.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 13.1.7.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 13.1.7.1.3.1
Substitute into the polynomial.
Step 13.1.7.1.3.2
Raise to the power of .
Step 13.1.7.1.3.3
Raise to the power of .
Step 13.1.7.1.3.4
Multiply by .
Step 13.1.7.1.3.5
Subtract from .
Step 13.1.7.1.3.6
Multiply by .
Step 13.1.7.1.3.7
Add and .
Step 13.1.7.1.3.8
Subtract from .
Step 13.1.7.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 13.1.7.1.5
Divide by .
Step 13.1.7.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
| - | - | + | + | - |
Step 13.1.7.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
| - | - | + | + | - |
Step 13.1.7.1.5.3
Multiply the new quotient term by the divisor.
| - | - | + | + | - | |||||||||
| + | - |
Step 13.1.7.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
| - | - | + | + | - | |||||||||
| - | + |
Step 13.1.7.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - |
Step 13.1.7.1.5.6
Pull the next terms from the original dividend down into the current dividend.
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + |
Step 13.1.7.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
| - | |||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + |
Step 13.1.7.1.5.8
Multiply the new quotient term by the divisor.
| - | |||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| - | + |
Step 13.1.7.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
| - | |||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - |
Step 13.1.7.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | |||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - |
Step 13.1.7.1.5.11
Pull the next terms from the original dividend down into the current dividend.
| - | |||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + |
Step 13.1.7.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
| - | - | ||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + |
Step 13.1.7.1.5.13
Multiply the new quotient term by the divisor.
| - | - | ||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + | ||||||||||||
| - | + |
Step 13.1.7.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
| - | - | ||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + | ||||||||||||
| + | - |
Step 13.1.7.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | - | ||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| + |
Step 13.1.7.1.5.16
Pull the next terms from the original dividend down into the current dividend.
| - | - | ||||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| + | - |
Step 13.1.7.1.5.17
Divide the highest order term in the dividend by the highest order term in divisor .
| - | - | + | |||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| + | - |
Step 13.1.7.1.5.18
Multiply the new quotient term by the divisor.
| - | - | + | |||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| + | - | ||||||||||||
| + | - |
Step 13.1.7.1.5.19
The expression needs to be subtracted from the dividend, so change all the signs in
| - | - | + | |||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| + | - | ||||||||||||
| - | + |
Step 13.1.7.1.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | - | + | |||||||||||
| - | - | + | + | - | |||||||||
| - | + | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| - | + | ||||||||||||
| + | - | ||||||||||||
| + | - | ||||||||||||
| - | + | ||||||||||||
Step 13.1.7.1.5.21
Since the remander is , the final answer is the quotient.
Step 13.1.7.1.6
Write as a set of factors.
Step 13.1.7.2
Remove unnecessary parentheses.
Step 13.1.8
Factor out of .
Step 13.1.8.1
Factor out of .
Step 13.1.8.2
Factor out of .
Step 13.1.8.3
Factor out of .
Step 13.1.9
Apply the distributive property.
Step 13.1.10
Simplify.
Step 13.1.10.1
Multiply by by adding the exponents.
Step 13.1.10.1.1
Use the power rule to combine exponents.
Step 13.1.10.1.2
Add and .
Step 13.1.10.2
Rewrite using the commutative property of multiplication.
Step 13.1.10.3
Move to the left of .
Step 13.1.11
Multiply by by adding the exponents.
Step 13.1.11.1
Move .
Step 13.1.11.2
Multiply by .
Step 13.1.11.2.1
Raise to the power of .
Step 13.1.11.2.2
Use the power rule to combine exponents.
Step 13.1.11.3
Add and .
Step 13.1.12
Apply the distributive property.
Step 13.1.13
Simplify.
Step 13.1.13.1
Multiply by .
Step 13.1.13.2
Multiply by .
Step 13.1.13.3
Multiply by .
Step 13.1.14
Add and .
Step 13.1.15
Subtract from .
Step 13.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 13.3
Set equal to and solve for .
Step 13.3.1
Set equal to .
Step 13.3.2
Add to both sides of the equation.
Step 13.4
Set equal to and solve for .
Step 13.4.1
Set equal to .
Step 13.4.2
Solve for .
Step 13.4.2.1
Factor the left side of the equation.
Step 13.4.2.1.1
Regroup terms.
Step 13.4.2.1.2
Factor out of .
Step 13.4.2.1.2.1
Factor out of .
Step 13.4.2.1.2.2
Factor out of .
Step 13.4.2.1.2.3
Factor out of .
Step 13.4.2.1.3
Factor out of .
Step 13.4.2.1.3.1
Factor out of .
Step 13.4.2.1.3.2
Factor out of .
Step 13.4.2.1.3.3
Factor out of .
Step 13.4.2.1.3.4
Factor out of .
Step 13.4.2.1.3.5
Factor out of .
Step 13.4.2.1.4
Factor.
Step 13.4.2.1.4.1
Factor by grouping.
Step 13.4.2.1.4.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 13.4.2.1.4.1.1.1
Factor out of .
Step 13.4.2.1.4.1.1.2
Rewrite as plus
Step 13.4.2.1.4.1.1.3
Apply the distributive property.
Step 13.4.2.1.4.1.2
Factor out the greatest common factor from each group.
Step 13.4.2.1.4.1.2.1
Group the first two terms and the last two terms.
Step 13.4.2.1.4.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 13.4.2.1.4.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 13.4.2.1.4.2
Remove unnecessary parentheses.
Step 13.4.2.1.5
Factor out of .
Step 13.4.2.1.5.1
Factor out of .
Step 13.4.2.1.5.2
Factor out of .
Step 13.4.2.1.5.3
Factor out of .
Step 13.4.2.1.6
Apply the distributive property.
Step 13.4.2.1.7
Multiply by .
Step 13.4.2.1.8
Multiply by .
Step 13.4.2.1.9
Factor.
Step 13.4.2.1.9.1
Rewrite in a factored form.
Step 13.4.2.1.9.1.1
Factor using the rational roots test.
Step 13.4.2.1.9.1.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 13.4.2.1.9.1.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 13.4.2.1.9.1.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 13.4.2.1.9.1.1.3.1
Substitute into the polynomial.
Step 13.4.2.1.9.1.1.3.2
Raise to the power of .
Step 13.4.2.1.9.1.1.3.3
Multiply by .
Step 13.4.2.1.9.1.1.3.4
Subtract from .
Step 13.4.2.1.9.1.1.3.5
Add and .
Step 13.4.2.1.9.1.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 13.4.2.1.9.1.1.5
Divide by .
Step 13.4.2.1.9.1.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
| - | + | - | + |
Step 13.4.2.1.9.1.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
| - | + | - | + |
Step 13.4.2.1.9.1.1.5.3
Multiply the new quotient term by the divisor.
| - | + | - | + | ||||||||
| + | - |
Step 13.4.2.1.9.1.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
| - | + | - | + | ||||||||
| - | + |
Step 13.4.2.1.9.1.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + |
Step 13.4.2.1.9.1.1.5.6
Pull the next terms from the original dividend down into the current dividend.
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - |
Step 13.4.2.1.9.1.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
| + | |||||||||||
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - |
Step 13.4.2.1.9.1.1.5.8
Multiply the new quotient term by the divisor.
| + | |||||||||||
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| + | - |
Step 13.4.2.1.9.1.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
| + | |||||||||||
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + |
Step 13.4.2.1.9.1.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| + | |||||||||||
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
| - |
Step 13.4.2.1.9.1.1.5.11
Pull the next terms from the original dividend down into the current dividend.
| + | |||||||||||
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
| - | + |
Step 13.4.2.1.9.1.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
| + | - | ||||||||||
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
| - | + |
Step 13.4.2.1.9.1.1.5.13
Multiply the new quotient term by the divisor.
| + | - | ||||||||||
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| - | + |
Step 13.4.2.1.9.1.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
| + | - | ||||||||||
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - |
Step 13.4.2.1.9.1.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| + | - | ||||||||||
| - | + | - | + | ||||||||
| - | + | ||||||||||
| + | - | ||||||||||
| - | + | ||||||||||
| - | + | ||||||||||
| + | - | ||||||||||
Step 13.4.2.1.9.1.1.5.16
Since the remander is , the final answer is the quotient.
Step 13.4.2.1.9.1.1.6
Write as a set of factors.
Step 13.4.2.1.9.1.2
Factor using the AC method.
Step 13.4.2.1.9.1.2.1
Factor using the AC method.
Step 13.4.2.1.9.1.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 13.4.2.1.9.1.2.1.2
Write the factored form using these integers.
Step 13.4.2.1.9.1.2.2
Remove unnecessary parentheses.
Step 13.4.2.1.9.1.3
Combine like factors.
Step 13.4.2.1.9.1.3.1
Raise to the power of .
Step 13.4.2.1.9.1.3.2
Raise to the power of .
Step 13.4.2.1.9.1.3.3
Use the power rule to combine exponents.
Step 13.4.2.1.9.1.3.4
Add and .
Step 13.4.2.1.9.2
Remove unnecessary parentheses.
Step 13.4.2.1.10
Combine exponents.
Step 13.4.2.1.10.1
Raise to the power of .
Step 13.4.2.1.10.2
Raise to the power of .
Step 13.4.2.1.10.3
Use the power rule to combine exponents.
Step 13.4.2.1.10.4
Add and .
Step 13.4.2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 13.4.2.3
Set equal to and solve for .
Step 13.4.2.3.1
Set equal to .
Step 13.4.2.3.2
Solve for .
Step 13.4.2.3.2.1
Set the equal to .
Step 13.4.2.3.2.2
Subtract from both sides of the equation.
Step 13.4.2.4
Set equal to and solve for .
Step 13.4.2.4.1
Set equal to .
Step 13.4.2.4.2
Solve for .
Step 13.4.2.4.2.1
Set the equal to .
Step 13.4.2.4.2.2
Add to both sides of the equation.
Step 13.4.2.5
The final solution is all the values that make true.
Step 13.5
The final solution is all the values that make true.
Step 14
The polynomial can be written as a set of linear factors.
Step 15
These are the roots (zeros) of the polynomial .
Step 16