Algebra Examples

Expand Using Pascal's Triangle (3-2x)^6
Step 1
Pascal's Triangle can be displayed as such:
The triangle can be used to calculate the coefficients of the expansion of by taking the exponent and adding . The coefficients will correspond with line of the triangle. For , so the coefficients of the expansion will correspond with line .
Step 2
The expansion follows the rule . The values of the coefficients, from the triangle, are .
Step 3
Substitute the actual values of and into the expression.
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply by .
Step 4.2
Raise to the power of .
Step 4.3
Apply the product rule to .
Step 4.4
Anything raised to is .
Step 4.5
Multiply by .
Step 4.6
Anything raised to is .
Step 4.7
Multiply by .
Step 4.8
Raise to the power of .
Step 4.9
Multiply by .
Step 4.10
Simplify.
Step 4.11
Multiply by .
Step 4.12
Raise to the power of .
Step 4.13
Multiply by .
Step 4.14
Apply the product rule to .
Step 4.15
Raise to the power of .
Step 4.16
Multiply by .
Step 4.17
Raise to the power of .
Step 4.18
Multiply by .
Step 4.19
Apply the product rule to .
Step 4.20
Raise to the power of .
Step 4.21
Multiply by .
Step 4.22
Raise to the power of .
Step 4.23
Multiply by .
Step 4.24
Apply the product rule to .
Step 4.25
Raise to the power of .
Step 4.26
Multiply by .
Step 4.27
Evaluate the exponent.
Step 4.28
Multiply by .
Step 4.29
Apply the product rule to .
Step 4.30
Raise to the power of .
Step 4.31
Multiply by .
Step 4.32
Multiply by .
Step 4.33
Anything raised to is .
Step 4.34
Multiply by .
Step 4.35
Apply the product rule to .
Step 4.36
Raise to the power of .