Enter a problem...
Algebra Examples
Step 1
Step 1.1
To find if the table follows a function rule, check to see if the values follow the linear form .
Step 1.2
Build a set of equations from the table such that .
Step 1.3
Calculate the values of and .
Step 1.3.1
Solve for in .
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Subtract from both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify the right side.
Step 1.3.2.2.1
Simplify .
Step 1.3.2.2.1.1
Simplify each term.
Step 1.3.2.2.1.1.1
Apply the distributive property.
Step 1.3.2.2.1.1.2
Multiply by .
Step 1.3.2.2.1.1.3
Multiply by .
Step 1.3.2.2.1.2
Add and .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify the right side.
Step 1.3.2.4.1
Simplify .
Step 1.3.2.4.1.1
Simplify each term.
Step 1.3.2.4.1.1.1
Apply the distributive property.
Step 1.3.2.4.1.1.2
Multiply by .
Step 1.3.2.4.1.1.3
Multiply .
Step 1.3.2.4.1.1.3.1
Multiply by .
Step 1.3.2.4.1.1.3.2
Multiply by .
Step 1.3.2.4.1.2
Add and .
Step 1.3.3
Solve for in .
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Step 1.3.3.2.1
Add to both sides of the equation.
Step 1.3.3.2.2
Add and .
Step 1.3.3.3
Divide each term in by and simplify.
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of .
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide by .
Step 1.3.4
Replace all occurrences of with in each equation.
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Step 1.3.4.2.1
Simplify .
Step 1.3.4.2.1.1
Multiply by .
Step 1.3.4.2.1.2
Add and .
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Step 1.3.4.4.1
Subtract from .
Step 1.3.5
Since is not true, there is no solution.
No solution
No solution
Step 1.4
Since for the corresponding values, the function is not linear.
The function is not linear
The function is not linear
Step 2
Step 2.1
To find if the table follows a function rule, check whether the function rule could follow the form .
Step 2.2
Build a set of equations from the table such that .
Step 2.3
Calculate the values of , , and .
Step 2.3.1
Solve for in .
Step 2.3.1.1
Rewrite the equation as .
Step 2.3.1.2
Move all terms not containing to the right side of the equation.
Step 2.3.1.2.1
Subtract from both sides of the equation.
Step 2.3.1.2.2
Subtract from both sides of the equation.
Step 2.3.2
Replace all occurrences of with in each equation.
Step 2.3.2.1
Replace all occurrences of in with .
Step 2.3.2.2
Simplify the right side.
Step 2.3.2.2.1
Simplify .
Step 2.3.2.2.1.1
Simplify each term.
Step 2.3.2.2.1.1.1
Raise to the power of .
Step 2.3.2.2.1.1.2
Apply the distributive property.
Step 2.3.2.2.1.1.3
Simplify.
Step 2.3.2.2.1.1.3.1
Multiply by .
Step 2.3.2.2.1.1.3.2
Multiply by .
Step 2.3.2.2.1.1.3.3
Multiply by .
Step 2.3.2.2.1.1.4
Move to the left of .
Step 2.3.2.2.1.2
Simplify by adding terms.
Step 2.3.2.2.1.2.1
Subtract from .
Step 2.3.2.2.1.2.2
Add and .
Step 2.3.2.3
Replace all occurrences of in with .
Step 2.3.2.4
Simplify the right side.
Step 2.3.2.4.1
Simplify .
Step 2.3.2.4.1.1
Simplify each term.
Step 2.3.2.4.1.1.1
Raise to the power of .
Step 2.3.2.4.1.1.2
Multiply by .
Step 2.3.2.4.1.1.3
Move to the left of .
Step 2.3.2.4.1.1.4
Rewrite as .
Step 2.3.2.4.1.2
Simplify by adding terms.
Step 2.3.2.4.1.2.1
Combine the opposite terms in .
Step 2.3.2.4.1.2.1.1
Add and .
Step 2.3.2.4.1.2.1.2
Add and .
Step 2.3.2.4.1.2.2
Subtract from .
Step 2.3.3
Solve for in .
Step 2.3.3.1
Rewrite the equation as .
Step 2.3.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.3.2.1
Subtract from both sides of the equation.
Step 2.3.3.2.2
Subtract from .
Step 2.3.3.3
Divide each term in by and simplify.
Step 2.3.3.3.1
Divide each term in by .
Step 2.3.3.3.2
Simplify the left side.
Step 2.3.3.3.2.1
Cancel the common factor of .
Step 2.3.3.3.2.1.1
Cancel the common factor.
Step 2.3.3.3.2.1.2
Divide by .
Step 2.3.3.3.3
Simplify the right side.
Step 2.3.3.3.3.1
Divide by .
Step 2.3.4
Replace all occurrences of with in each equation.
Step 2.3.4.1
Replace all occurrences of in with .
Step 2.3.4.2
Simplify the right side.
Step 2.3.4.2.1
Simplify .
Step 2.3.4.2.1.1
Multiply by .
Step 2.3.4.2.1.2
Subtract from .
Step 2.3.4.3
Replace all occurrences of in with .
Step 2.3.4.4
Simplify the right side.
Step 2.3.4.4.1
Simplify .
Step 2.3.4.4.1.1
Multiply by .
Step 2.3.4.4.1.2
Subtract from .
Step 2.3.4.4.1.3
Subtract from .
Step 2.3.5
Solve for in .
Step 2.3.5.1
Rewrite the equation as .
Step 2.3.5.2
Move all terms not containing to the right side of the equation.
Step 2.3.5.2.1
Add to both sides of the equation.
Step 2.3.5.2.2
Add and .
Step 2.3.5.3
Divide each term in by and simplify.
Step 2.3.5.3.1
Divide each term in by .
Step 2.3.5.3.2
Simplify the left side.
Step 2.3.5.3.2.1
Cancel the common factor of .
Step 2.3.5.3.2.1.1
Cancel the common factor.
Step 2.3.5.3.2.1.2
Divide by .
Step 2.3.5.3.3
Simplify the right side.
Step 2.3.5.3.3.1
Divide by .
Step 2.3.6
Replace all occurrences of with in each equation.
Step 2.3.6.1
Replace all occurrences of in with .
Step 2.3.6.2
Simplify the right side.
Step 2.3.6.2.1
Multiply by .
Step 2.3.7
List all of the solutions.
Step 2.4
Calculate the value of using each value in the table and compare this value to the given value in the table.
Step 2.4.1
Calculate the value of such that when , , , and .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Raise to the power of .
Step 2.4.1.1.2
Multiply by .
Step 2.4.1.1.3
Multiply by .
Step 2.4.1.2
Simplify by subtracting numbers.
Step 2.4.1.2.1
Subtract from .
Step 2.4.1.2.2
Subtract from .
Step 2.4.2
If the table has a quadratic function rule, for the corresponding value, . This check passes since and .
Step 2.4.3
Calculate the value of such that when , , , and .
Step 2.4.3.1
Simplify each term.
Step 2.4.3.1.1
Raise to the power of .
Step 2.4.3.1.2
Multiply by .
Step 2.4.3.1.3
Multiply by .
Step 2.4.3.2
Simplify by subtracting numbers.
Step 2.4.3.2.1
Subtract from .
Step 2.4.3.2.2
Subtract from .
Step 2.4.4
If the table has a quadratic function rule, for the corresponding value, . This check does not pass, since and . The function rule can't be quadratic.
Step 2.4.5
Since for the corresponding values, the function is not quadratic.
The function is not quadratic
The function is not quadratic
The function is not quadratic
Step 3
There are no values of , , or in the equations or that work for every pair of and .
The table does not have a function rule that is linear or quadratic.