Algebra Examples

Divide Using Long Polynomial Division (6y^4+23y^3+ky^2+18y+18)÷(3+y)
Step 1
Reorder and .
Step 2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+++++
Step 3
Divide the highest order term in the dividend by the highest order term in divisor .
+++++
Step 4
Multiply the new quotient term by the divisor.
+++++
++
Step 5
The expression needs to be subtracted from the dividend, so change all the signs in
+++++
--
Step 6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+++++
--
+
Step 7
Pull the next terms from the original dividend down into the current dividend.
+++++
--
++
Step 8
Divide the highest order term in the dividend by the highest order term in divisor .
+
+++++
--
++
Step 9
Multiply the new quotient term by the divisor.
+
+++++
--
++
++
Step 10
The expression needs to be subtracted from the dividend, so change all the signs in
+
+++++
--
++
--
Step 11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+
+++++
--
++
--
+-
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
++
+++++
--
++
--
+-
Step 13
Multiply the new quotient term by the divisor.
++
+++++
--
++
--
+-
++
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
++
+++++
--
++
--
+-
--
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++
+++++
--
++
--
+-
--
--
Step 16
Divide the highest order term in the dividend by the highest order term in divisor .
++-
+++++
--
++
--
+-
--
--
Step 17
Multiply the new quotient term by the divisor.
++-
+++++
--
++
--
+-
--
--
--
Step 18
The expression needs to be subtracted from the dividend, so change all the signs in
++-
+++++
--
++
--
+-
--
--
++
Step 19
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++-
+++++
--
++
--
+-
--
--
++
-+
Step 20
Divide the highest order term in the dividend by the highest order term in divisor .
++--
+++++
--
++
--
+-
--
--
++
-+
Step 21
Multiply the new quotient term by the divisor.
++--
+++++
--
++
--
+-
--
--
++
-+
--
Step 22
The expression needs to be subtracted from the dividend, so change all the signs in
++--
+++++
--
++
--
+-
--
--
++
-+
++
Step 23
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++--
+++++
--
++
--
+-
--
--
++
-+
++
++
Step 24
Divide the highest order term in the dividend by the highest order term in divisor .
++--+
+++++
--
++
--
+-
--
--
++
-+
++
++
Step 25
Multiply the new quotient term by the divisor.
++--+
+++++
--
++
--
+-
--
--
++
-+
++
++
++
Step 26
The expression needs to be subtracted from the dividend, so change all the signs in
++--+
+++++
--
++
--
+-
--
--
++
-+
++
++
--
Step 27
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++--+
+++++
--
++
--
+-
--
--
++
-+
++
++
--
+-
Step 28
The final answer is the quotient plus the remainder over the divisor.