Enter a problem...
Algebra Examples
Step 1
Differentiate both sides of the equation.
Step 2
Differentiate using the Power Rule which states that is where .
Step 3
Step 3.1
Differentiate using the chain rule, which states that is where and .
Step 3.1.1
To apply the Chain Rule, set as .
Step 3.1.2
The derivative of with respect to is .
Step 3.1.3
Replace all occurrences of with .
Step 3.2
Differentiate using the Constant Multiple Rule.
Step 3.2.1
Factor out of .
Step 3.2.2
Simplify the expression.
Step 3.2.2.1
Apply the product rule to .
Step 3.2.2.2
Raise to the power of .
Step 3.2.2.3
Multiply the exponents in .
Step 3.2.2.3.1
Apply the power rule and multiply exponents, .
Step 3.2.2.3.2
Multiply by .
Step 3.2.2.4
Multiply by .
Step 3.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.4
Combine fractions.
Step 3.2.4.1
Multiply by .
Step 3.2.4.2
Combine and .
Step 3.2.4.3
Move the negative in front of the fraction.
Step 3.3
Differentiate using the chain rule, which states that is where and .
Step 3.3.1
To apply the Chain Rule, set as .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Replace all occurrences of with .
Step 3.4
Combine fractions.
Step 3.4.1
Multiply by .
Step 3.4.2
Combine and .
Step 3.4.3
Multiply by .
Step 3.4.4
Combine and .
Step 3.4.5
Simplify the expression.
Step 3.4.5.1
Move to the left of .
Step 3.4.5.2
Move the negative in front of the fraction.
Step 3.5
Rewrite as .
Step 3.6
Combine and .
Step 3.7
Simplify the numerator.
Step 3.7.1
Rewrite using the commutative property of multiplication.
Step 3.7.2
Reorder factors in .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Rewrite the equation as .
Step 5.2
Divide each term in by and simplify.
Step 5.2.1
Divide each term in by .
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Reduce the expression by cancelling the common factors.
Step 5.2.2.1.1
Dividing two negative values results in a positive value.
Step 5.2.2.1.2
Divide by .
Step 5.2.2.2
Simplify the denominator.
Step 5.2.2.2.1
Rewrite as .
Step 5.2.2.2.2
Rewrite as .
Step 5.2.2.2.3
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 5.2.2.2.4
Multiply by .
Step 5.2.2.3
Multiply by .
Step 5.2.2.4
Combine and simplify the denominator.
Step 5.2.2.4.1
Multiply by .
Step 5.2.2.4.2
Raise to the power of .
Step 5.2.2.4.3
Raise to the power of .
Step 5.2.2.4.4
Use the power rule to combine exponents.
Step 5.2.2.4.5
Add and .
Step 5.2.2.4.6
Rewrite as .
Step 5.2.2.4.6.1
Use to rewrite as .
Step 5.2.2.4.6.2
Apply the power rule and multiply exponents, .
Step 5.2.2.4.6.3
Combine and .
Step 5.2.2.4.6.4
Cancel the common factor of .
Step 5.2.2.4.6.4.1
Cancel the common factor.
Step 5.2.2.4.6.4.2
Rewrite the expression.
Step 5.2.2.4.6.5
Simplify.
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
Divide by .
Step 5.3
Multiply both sides by .
Step 5.4
Simplify.
Step 5.4.1
Simplify the left side.
Step 5.4.1.1
Cancel the common factor of .
Step 5.4.1.1.1
Cancel the common factor.
Step 5.4.1.1.2
Rewrite the expression.
Step 5.4.2
Simplify the right side.
Step 5.4.2.1
Simplify .
Step 5.4.2.1.1
Expand using the FOIL Method.
Step 5.4.2.1.1.1
Apply the distributive property.
Step 5.4.2.1.1.2
Apply the distributive property.
Step 5.4.2.1.1.3
Apply the distributive property.
Step 5.4.2.1.2
Simplify and combine like terms.
Step 5.4.2.1.2.1
Simplify each term.
Step 5.4.2.1.2.1.1
Multiply by .
Step 5.4.2.1.2.1.2
Multiply by .
Step 5.4.2.1.2.1.3
Multiply by .
Step 5.4.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 5.4.2.1.2.1.5
Multiply by by adding the exponents.
Step 5.4.2.1.2.1.5.1
Move .
Step 5.4.2.1.2.1.5.2
Use the power rule to combine exponents.
Step 5.4.2.1.2.1.5.3
Add and .
Step 5.4.2.1.2.1.6
Multiply by .
Step 5.4.2.1.2.2
Add and .
Step 5.4.2.1.2.3
Add and .
Step 5.4.2.1.3
Apply the distributive property.
Step 5.4.2.1.4
Simplify the expression.
Step 5.4.2.1.4.1
Multiply by .
Step 5.4.2.1.4.2
Multiply by .
Step 5.4.2.1.4.3
Reorder and .
Step 5.5
Divide each term in by and simplify.
Step 5.5.1
Divide each term in by .
Step 5.5.2
Simplify the left side.
Step 5.5.2.1
Cancel the common factor of .
Step 5.5.2.1.1
Cancel the common factor.
Step 5.5.2.1.2
Rewrite the expression.
Step 5.5.2.2
Cancel the common factor of .
Step 5.5.2.2.1
Cancel the common factor.
Step 5.5.2.2.2
Rewrite the expression.
Step 5.5.2.3
Cancel the common factor of .
Step 5.5.2.3.1
Cancel the common factor.
Step 5.5.2.3.2
Divide by .
Step 5.5.3
Simplify the right side.
Step 5.5.3.1
Simplify each term.
Step 5.5.3.1.1
Cancel the common factor of and .
Step 5.5.3.1.1.1
Factor out of .
Step 5.5.3.1.1.2
Cancel the common factors.
Step 5.5.3.1.1.2.1
Factor out of .
Step 5.5.3.1.1.2.2
Cancel the common factor.
Step 5.5.3.1.1.2.3
Rewrite the expression.
Step 5.5.3.1.2
Cancel the common factor of and .
Step 5.5.3.1.2.1
Factor out of .
Step 5.5.3.1.2.2
Cancel the common factors.
Step 5.5.3.1.2.2.1
Factor out of .
Step 5.5.3.1.2.2.2
Cancel the common factor.
Step 5.5.3.1.2.2.3
Rewrite the expression.
Step 5.5.3.1.3
Multiply by .
Step 5.5.3.1.4
Combine and simplify the denominator.
Step 5.5.3.1.4.1
Multiply by .
Step 5.5.3.1.4.2
Move .
Step 5.5.3.1.4.3
Raise to the power of .
Step 5.5.3.1.4.4
Raise to the power of .
Step 5.5.3.1.4.5
Use the power rule to combine exponents.
Step 5.5.3.1.4.6
Add and .
Step 5.5.3.1.4.7
Rewrite as .
Step 5.5.3.1.4.7.1
Use to rewrite as .
Step 5.5.3.1.4.7.2
Apply the power rule and multiply exponents, .
Step 5.5.3.1.4.7.3
Combine and .
Step 5.5.3.1.4.7.4
Cancel the common factor of .
Step 5.5.3.1.4.7.4.1
Cancel the common factor.
Step 5.5.3.1.4.7.4.2
Rewrite the expression.
Step 5.5.3.1.4.7.5
Simplify.
Step 5.5.3.1.5
Move the negative in front of the fraction.
Step 5.5.3.1.6
Multiply by .
Step 5.5.3.1.7
Combine and simplify the denominator.
Step 5.5.3.1.7.1
Multiply by .
Step 5.5.3.1.7.2
Move .
Step 5.5.3.1.7.3
Raise to the power of .
Step 5.5.3.1.7.4
Raise to the power of .
Step 5.5.3.1.7.5
Use the power rule to combine exponents.
Step 5.5.3.1.7.6
Add and .
Step 5.5.3.1.7.7
Rewrite as .
Step 5.5.3.1.7.7.1
Use to rewrite as .
Step 5.5.3.1.7.7.2
Apply the power rule and multiply exponents, .
Step 5.5.3.1.7.7.3
Combine and .
Step 5.5.3.1.7.7.4
Cancel the common factor of .
Step 5.5.3.1.7.7.4.1
Cancel the common factor.
Step 5.5.3.1.7.7.4.2
Rewrite the expression.
Step 5.5.3.1.7.7.5
Simplify.
Step 5.5.3.1.8
Simplify the denominator.
Step 5.5.3.1.8.1
Rewrite.
Step 5.5.3.1.8.2
Move .
Step 5.5.3.1.8.3
Raise to the power of .
Step 5.5.3.1.8.4
Raise to the power of .
Step 5.5.3.1.8.5
Use the power rule to combine exponents.
Step 5.5.3.1.8.6
Add and .
Step 5.5.3.1.8.7
Rewrite as .
Step 5.5.3.1.8.7.1
Use to rewrite as .
Step 5.5.3.1.8.7.2
Apply the power rule and multiply exponents, .
Step 5.5.3.1.8.7.3
Combine and .
Step 5.5.3.1.8.7.4
Cancel the common factor of .
Step 5.5.3.1.8.7.4.1
Cancel the common factor.
Step 5.5.3.1.8.7.4.2
Rewrite the expression.
Step 5.5.3.1.8.7.5
Simplify.
Step 5.5.3.1.8.8
Remove unnecessary parentheses.
Step 5.5.3.2
To write as a fraction with a common denominator, multiply by .
Step 5.5.3.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 5.5.3.3.1
Multiply by .
Step 5.5.3.3.2
Multiply by .
Step 5.5.3.3.3
Reorder the factors of .
Step 5.5.3.4
Combine the numerators over the common denominator.
Step 5.5.3.5
Simplify the numerator.
Step 5.5.3.5.1
Factor out of .
Step 5.5.3.5.1.1
Factor out of .
Step 5.5.3.5.1.2
Factor out of .
Step 5.5.3.5.1.3
Factor out of .
Step 5.5.3.5.2
Multiply by .
Step 5.5.3.5.3
Multiply by by adding the exponents.
Step 5.5.3.5.3.1
Move .
Step 5.5.3.5.3.2
Use the power rule to combine exponents.
Step 5.5.3.5.3.3
Add and .
Step 5.5.3.5.4
Rewrite as .
Step 5.5.3.5.5
Rewrite as .
Step 5.5.3.5.6
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 5.5.3.6
Reduce the expression by cancelling the common factors.
Step 5.5.3.6.1
Cancel the common factor of and .
Step 5.5.3.6.1.1
Reorder terms.
Step 5.5.3.6.1.2
Cancel the common factor.
Step 5.5.3.6.1.3
Rewrite the expression.
Step 5.5.3.6.2
Cancel the common factor of and .
Step 5.5.3.6.2.1
Factor out of .
Step 5.5.3.6.2.2
Rewrite as .
Step 5.5.3.6.2.3
Factor out of .
Step 5.5.3.6.2.4
Rewrite as .
Step 5.5.3.6.2.5
Reorder terms.
Step 5.5.3.6.2.6
Cancel the common factor.
Step 5.5.3.6.2.7
Rewrite the expression.
Step 5.5.3.6.3
Simplify the expression.
Step 5.5.3.6.3.1
Move to the left of .
Step 5.5.3.6.3.2
Move the negative in front of the fraction.
Step 6
Replace with .