Algebra Examples

Plot 2x^2-36x<-120
Step 1
Convert the inequality to an equation.
Step 2
Add to both sides of the equation.
Step 3
Factor out of .
Tap for more steps...
Step 3.1
Factor out of .
Step 3.2
Factor out of .
Step 3.3
Factor out of .
Step 3.4
Factor out of .
Step 3.5
Factor out of .
Step 4
Divide each term in by and simplify.
Tap for more steps...
Step 4.1
Divide each term in by .
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Divide by .
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Divide by .
Step 5
Use the quadratic formula to find the solutions.
Step 6
Substitute the values , , and into the quadratic formula and solve for .
Step 7
Simplify.
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Raise to the power of .
Step 7.1.2
Multiply .
Tap for more steps...
Step 7.1.2.1
Multiply by .
Step 7.1.2.2
Multiply by .
Step 7.1.3
Subtract from .
Step 7.1.4
Rewrite as .
Tap for more steps...
Step 7.1.4.1
Factor out of .
Step 7.1.4.2
Rewrite as .
Step 7.1.5
Pull terms out from under the radical.
Step 7.2
Multiply by .
Step 7.3
Simplify .
Step 8
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 8.1
Simplify the numerator.
Tap for more steps...
Step 8.1.1
Raise to the power of .
Step 8.1.2
Multiply .
Tap for more steps...
Step 8.1.2.1
Multiply by .
Step 8.1.2.2
Multiply by .
Step 8.1.3
Subtract from .
Step 8.1.4
Rewrite as .
Tap for more steps...
Step 8.1.4.1
Factor out of .
Step 8.1.4.2
Rewrite as .
Step 8.1.5
Pull terms out from under the radical.
Step 8.2
Multiply by .
Step 8.3
Simplify .
Step 8.4
Change the to .
Step 9
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 9.1
Simplify the numerator.
Tap for more steps...
Step 9.1.1
Raise to the power of .
Step 9.1.2
Multiply .
Tap for more steps...
Step 9.1.2.1
Multiply by .
Step 9.1.2.2
Multiply by .
Step 9.1.3
Subtract from .
Step 9.1.4
Rewrite as .
Tap for more steps...
Step 9.1.4.1
Factor out of .
Step 9.1.4.2
Rewrite as .
Step 9.1.5
Pull terms out from under the radical.
Step 9.2
Multiply by .
Step 9.3
Simplify .
Step 9.4
Change the to .
Step 10
The final answer is the combination of both solutions.
Step 11
Use each root to create test intervals.
Step 12
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Tap for more steps...
Step 12.1
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 12.1.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.1.2
Replace with in the original inequality.
Step 12.1.3
The left side is not less than the right side , which means that the given statement is false.
False
False
Step 12.2
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 12.2.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.2.2
Replace with in the original inequality.
Step 12.2.3
The left side is less than the right side , which means that the given statement is always true.
True
True
Step 12.3
Test a value on the interval to see if it makes the inequality true.
Tap for more steps...
Step 12.3.1
Choose a value on the interval and see if this value makes the original inequality true.
Step 12.3.2
Replace with in the original inequality.
Step 12.3.3
The left side is not less than the right side , which means that the given statement is false.
False
False
Step 12.4
Compare the intervals to determine which ones satisfy the original inequality.
False
True
False
False
True
False
Step 13
The solution consists of all of the true intervals.
Step 14