Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Subtract from both sides of the equation.
Step 2.2
Subtract from .
Step 3
Use the quadratic formula to find the solutions.
Step 4
Substitute the values , , and into the quadratic formula and solve for .
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Factor out of .
Step 5.1.1.1
Factor out of .
Step 5.1.1.2
Factor out of .
Step 5.1.1.3
Factor out of .
Step 5.1.2
Factor out of .
Step 5.1.2.1
Factor out of .
Step 5.1.2.2
Factor out of .
Step 5.1.2.3
Factor out of .
Step 5.1.3
Multiply by .
Step 5.1.4
Factor out of .
Step 5.1.4.1
Factor out of .
Step 5.1.4.2
Factor out of .
Step 5.1.4.3
Factor out of .
Step 5.1.5
Multiply by .
Step 5.1.6
Multiply by .
Step 5.1.7
Rewrite as .
Step 5.1.7.1
Factor out of .
Step 5.1.7.2
Rewrite as .
Step 5.1.7.3
Rewrite as .
Step 5.1.7.4
Add parentheses.
Step 5.1.8
Pull terms out from under the radical.
Step 5.1.9
Raise to the power of .
Step 5.2
Multiply by .
Step 5.3
Simplify .
Step 5.4
Move the negative in front of the fraction.
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
Factor out of .
Step 6.1.1.1
Factor out of .
Step 6.1.1.2
Factor out of .
Step 6.1.1.3
Factor out of .
Step 6.1.2
Factor out of .
Step 6.1.2.1
Factor out of .
Step 6.1.2.2
Factor out of .
Step 6.1.2.3
Factor out of .
Step 6.1.3
Multiply by .
Step 6.1.4
Factor out of .
Step 6.1.4.1
Factor out of .
Step 6.1.4.2
Factor out of .
Step 6.1.4.3
Factor out of .
Step 6.1.5
Multiply by .
Step 6.1.6
Multiply by .
Step 6.1.7
Rewrite as .
Step 6.1.7.1
Factor out of .
Step 6.1.7.2
Rewrite as .
Step 6.1.7.3
Rewrite as .
Step 6.1.7.4
Add parentheses.
Step 6.1.8
Pull terms out from under the radical.
Step 6.1.9
Raise to the power of .
Step 6.2
Multiply by .
Step 6.3
Simplify .
Step 6.4
Move the negative in front of the fraction.
Step 6.5
Change the to .
Step 7
Step 7.1
Simplify the numerator.
Step 7.1.1
Factor out of .
Step 7.1.1.1
Factor out of .
Step 7.1.1.2
Factor out of .
Step 7.1.1.3
Factor out of .
Step 7.1.2
Factor out of .
Step 7.1.2.1
Factor out of .
Step 7.1.2.2
Factor out of .
Step 7.1.2.3
Factor out of .
Step 7.1.3
Multiply by .
Step 7.1.4
Factor out of .
Step 7.1.4.1
Factor out of .
Step 7.1.4.2
Factor out of .
Step 7.1.4.3
Factor out of .
Step 7.1.5
Multiply by .
Step 7.1.6
Multiply by .
Step 7.1.7
Rewrite as .
Step 7.1.7.1
Factor out of .
Step 7.1.7.2
Rewrite as .
Step 7.1.7.3
Rewrite as .
Step 7.1.7.4
Add parentheses.
Step 7.1.8
Pull terms out from under the radical.
Step 7.1.9
Raise to the power of .
Step 7.2
Multiply by .
Step 7.3
Simplify .
Step 7.4
Move the negative in front of the fraction.
Step 7.5
Change the to .
Step 8
The final answer is the combination of both solutions.