Enter a problem...
Algebra Examples
Step 1
Step 1.1
Multiply .
Step 1.1.1
Combine and .
Step 1.1.2
Combine and .
Step 1.2
Move to the left of .
Step 2
Subtract from both sides of the equation.
Step 3
Step 3.1
Factor out of .
Step 3.2
Factor out of .
Step 3.3
Factor out of .
Step 4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 5
Set equal to .
Step 6
Step 6.1
Set equal to .
Step 6.2
Solve for .
Step 6.2.1
Subtract from both sides of the equation.
Step 6.2.2
Multiply both sides of the equation by .
Step 6.2.3
Simplify both sides of the equation.
Step 6.2.3.1
Simplify the left side.
Step 6.2.3.1.1
Simplify .
Step 6.2.3.1.1.1
Cancel the common factor of .
Step 6.2.3.1.1.1.1
Move the leading negative in into the numerator.
Step 6.2.3.1.1.1.2
Move the leading negative in into the numerator.
Step 6.2.3.1.1.1.3
Factor out of .
Step 6.2.3.1.1.1.4
Cancel the common factor.
Step 6.2.3.1.1.1.5
Rewrite the expression.
Step 6.2.3.1.1.2
Cancel the common factor of .
Step 6.2.3.1.1.2.1
Factor out of .
Step 6.2.3.1.1.2.2
Cancel the common factor.
Step 6.2.3.1.1.2.3
Rewrite the expression.
Step 6.2.3.1.1.3
Multiply.
Step 6.2.3.1.1.3.1
Multiply by .
Step 6.2.3.1.1.3.2
Multiply by .
Step 6.2.3.2
Simplify the right side.
Step 6.2.3.2.1
Multiply .
Step 6.2.3.2.1.1
Multiply by .
Step 6.2.3.2.1.2
Multiply by .
Step 6.2.3.2.1.3
Combine and .
Step 6.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 6.2.5
Simplify .
Step 6.2.5.1
Rewrite as .
Step 6.2.5.1.1
Factor the perfect power out of .
Step 6.2.5.1.2
Factor the perfect power out of .
Step 6.2.5.1.3
Rearrange the fraction .
Step 6.2.5.2
Pull terms out from under the radical.
Step 6.2.5.3
Rewrite as .
Step 6.2.5.4
Multiply by .
Step 6.2.5.5
Combine and simplify the denominator.
Step 6.2.5.5.1
Multiply by .
Step 6.2.5.5.2
Raise to the power of .
Step 6.2.5.5.3
Raise to the power of .
Step 6.2.5.5.4
Use the power rule to combine exponents.
Step 6.2.5.5.5
Add and .
Step 6.2.5.5.6
Rewrite as .
Step 6.2.5.5.6.1
Use to rewrite as .
Step 6.2.5.5.6.2
Apply the power rule and multiply exponents, .
Step 6.2.5.5.6.3
Combine and .
Step 6.2.5.5.6.4
Cancel the common factor of .
Step 6.2.5.5.6.4.1
Cancel the common factor.
Step 6.2.5.5.6.4.2
Rewrite the expression.
Step 6.2.5.5.6.5
Simplify.
Step 6.2.5.6
Combine using the product rule for radicals.
Step 6.2.5.7
Multiply by .
Step 6.2.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 6.2.6.1
First, use the positive value of the to find the first solution.
Step 6.2.6.2
Next, use the negative value of the to find the second solution.
Step 6.2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 7
The final solution is all the values that make true.
Step 8
To rewrite as a function of , write the equation so that is by itself on one side of the equal sign and an expression involving only is on the other side.