Algebra Examples

Write as a Function of c x^2+3x+c=7/4+c
Step 1
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 1.1
Move all the expressions to the left side of the equation.
Tap for more steps...
Step 1.1.1
Subtract from both sides of the equation.
Step 1.1.2
Subtract from both sides of the equation.
Step 1.2
Combine the opposite terms in .
Tap for more steps...
Step 1.2.1
Subtract from .
Step 1.2.2
Add and .
Step 2
Multiply through by the least common denominator , then simplify.
Tap for more steps...
Step 2.1
Apply the distributive property.
Step 2.2
Simplify.
Tap for more steps...
Step 2.2.1
Multiply by .
Step 2.2.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.2.1
Move the leading negative in into the numerator.
Step 2.2.2.2
Cancel the common factor.
Step 2.2.2.3
Rewrite the expression.
Step 3
Use the quadratic formula to find the solutions.
Step 4
Substitute the values , , and into the quadratic formula and solve for .
Step 5
Simplify.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Raise to the power of .
Step 5.1.2
Multiply .
Tap for more steps...
Step 5.1.2.1
Multiply by .
Step 5.1.2.2
Multiply by .
Step 5.1.3
Add and .
Step 5.1.4
Rewrite as .
Step 5.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 5.2
Multiply by .
Step 5.3
Simplify .
Step 6
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Raise to the power of .
Step 6.1.2
Multiply .
Tap for more steps...
Step 6.1.2.1
Multiply by .
Step 6.1.2.2
Multiply by .
Step 6.1.3
Add and .
Step 6.1.4
Rewrite as .
Step 6.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 6.2
Multiply by .
Step 6.3
Simplify .
Step 6.4
Change the to .
Step 6.5
Add and .
Step 7
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 7.1
Simplify the numerator.
Tap for more steps...
Step 7.1.1
Raise to the power of .
Step 7.1.2
Multiply .
Tap for more steps...
Step 7.1.2.1
Multiply by .
Step 7.1.2.2
Multiply by .
Step 7.1.3
Add and .
Step 7.1.4
Rewrite as .
Step 7.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 7.2
Multiply by .
Step 7.3
Simplify .
Step 7.4
Change the to .
Step 7.5
Subtract from .
Step 7.6
Move the negative in front of the fraction.
Step 8
The final answer is the combination of both solutions.
Step 9
To rewrite as a function of , write the equation so that is by itself on one side of the equal sign and an expression involving only is on the other side.