Algebra Examples

Find the Remainder (x^5-15x^4+90x^3-270^2+405x-243)/(x-3)
Step 1
To calculate the remainder, first divide the polynomials.
Tap for more steps...
Step 1.1
Expand .
Tap for more steps...
Step 1.1.1
Rewrite the exponentiation as a product.
Step 1.1.2
Remove parentheses.
Step 1.1.3
Multiply by .
Step 1.1.4
Multiply by .
Step 1.1.5
Move .
Step 1.1.6
Subtract from .
Step 1.2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
--+++-
Step 1.3
Divide the highest order term in the dividend by the highest order term in divisor .
--+++-
Step 1.4
Multiply the new quotient term by the divisor.
--+++-
+-
Step 1.5
The expression needs to be subtracted from the dividend, so change all the signs in
--+++-
-+
Step 1.6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
--+++-
-+
-
Step 1.7
Pull the next terms from the original dividend down into the current dividend.
--+++-
-+
-+
Step 1.8
Divide the highest order term in the dividend by the highest order term in divisor .
-
--+++-
-+
-+
Step 1.9
Multiply the new quotient term by the divisor.
-
--+++-
-+
-+
-+
Step 1.10
The expression needs to be subtracted from the dividend, so change all the signs in
-
--+++-
-+
-+
+-
Step 1.11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
--+++-
-+
-+
+-
+
Step 1.12
Pull the next terms from the original dividend down into the current dividend.
-
--+++-
-+
-+
+-
++
Step 1.13
Divide the highest order term in the dividend by the highest order term in divisor .
-+
--+++-
-+
-+
+-
++
Step 1.14
Multiply the new quotient term by the divisor.
-+
--+++-
-+
-+
+-
++
+-
Step 1.15
The expression needs to be subtracted from the dividend, so change all the signs in
-+
--+++-
-+
-+
+-
++
-+
Step 1.16
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
--+++-
-+
-+
+-
++
-+
+
Step 1.17
Pull the next terms from the original dividend down into the current dividend.
-+
--+++-
-+
-+
+-
++
-+
++
Step 1.18
Divide the highest order term in the dividend by the highest order term in divisor .
-++
--+++-
-+
-+
+-
++
-+
++
Step 1.19
Multiply the new quotient term by the divisor.
-++
--+++-
-+
-+
+-
++
-+
++
+-
Step 1.20
The expression needs to be subtracted from the dividend, so change all the signs in
-++
--+++-
-+
-+
+-
++
-+
++
-+
Step 1.21
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++
--+++-
-+
-+
+-
++
-+
++
-+
+
Step 1.22
Pull the next terms from the original dividend down into the current dividend.
-++
--+++-
-+
-+
+-
++
-+
++
-+
+-
Step 1.23
Divide the highest order term in the dividend by the highest order term in divisor .
-+++
--+++-
-+
-+
+-
++
-+
++
-+
+-
Step 1.24
Multiply the new quotient term by the divisor.
-+++
--+++-
-+
-+
+-
++
-+
++
-+
+-
+-
Step 1.25
The expression needs to be subtracted from the dividend, so change all the signs in
-+++
--+++-
-+
-+
+-
++
-+
++
-+
+-
-+
Step 1.26
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+++
--+++-
-+
-+
+-
++
-+
++
-+
+-
-+
-
Step 1.27
The final answer is the quotient plus the remainder over the divisor.
Step 2
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.