Algebra Examples

Divide Using Long Polynomial Division (-14x^7+8x^5-6x^4+5x)/(x^3)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+++-++-++++
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
-
+++-++-++++
Step 3
Multiply the new quotient term by the divisor.
-
+++-++-++++
-+++
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
-
+++-++-++++
+---
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
+++-++-++++
+---
+-
Step 6
Pull the next term from the original dividend down into the current dividend.
-
+++-++-++++
+---
+-++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
-++
+++-++-++++
+---
+-++
Step 8
Multiply the new quotient term by the divisor.
-++
+++-++-++++
+---
+-++
++++
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
-++
+++-++-++++
+---
+-++
----
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++
+++-++-++++
+---
+-++
----
-++
Step 11
Pull the next terms from the original dividend down into the current dividend.
-++
+++-++-++++
+---
+-++
----
-++++
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
-++-
+++-++-++++
+---
+-++
----
-++++
Step 13
Multiply the new quotient term by the divisor.
-++-
+++-++-++++
+---
+-++
----
-++++
-+++
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
-++-
+++-++-++++
+---
+-++
----
-++++
+---
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++-
+++-++-++++
+---
+-++
----
-++++
+---
+
Step 16
Pull the next terms from the original dividend down into the current dividend.
-++-
+++-++-++++
+---
+-++
----
-++++
+---
++
Step 17
The final answer is the quotient plus the remainder over the divisor.