Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Factor out of .
Step 2.2
Factor out of .
Step 2.3
Factor out of .
Step 3
Rewrite as .
Step 4
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 5
Step 5.1
Simplify.
Step 5.1.1
Move to the left of .
Step 5.1.2
Raise to the power of .
Step 5.2
Remove unnecessary parentheses.
Step 6
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 7
Set equal to .
Step 8
Step 8.1
Set equal to .
Step 8.2
Add to both sides of the equation.
Step 9
Step 9.1
Set equal to .
Step 9.2
Solve for .
Step 9.2.1
Use the quadratic formula to find the solutions.
Step 9.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 9.2.3
Simplify.
Step 9.2.3.1
Simplify the numerator.
Step 9.2.3.1.1
Raise to the power of .
Step 9.2.3.1.2
Multiply .
Step 9.2.3.1.2.1
Multiply by .
Step 9.2.3.1.2.2
Multiply by .
Step 9.2.3.1.3
Subtract from .
Step 9.2.3.1.4
Rewrite as .
Step 9.2.3.1.5
Rewrite as .
Step 9.2.3.1.6
Rewrite as .
Step 9.2.3.1.7
Rewrite as .
Step 9.2.3.1.7.1
Factor out of .
Step 9.2.3.1.7.2
Rewrite as .
Step 9.2.3.1.8
Pull terms out from under the radical.
Step 9.2.3.1.9
Move to the left of .
Step 9.2.3.2
Multiply by .
Step 9.2.4
Simplify the expression to solve for the portion of the .
Step 9.2.4.1
Simplify the numerator.
Step 9.2.4.1.1
Raise to the power of .
Step 9.2.4.1.2
Multiply .
Step 9.2.4.1.2.1
Multiply by .
Step 9.2.4.1.2.2
Multiply by .
Step 9.2.4.1.3
Subtract from .
Step 9.2.4.1.4
Rewrite as .
Step 9.2.4.1.5
Rewrite as .
Step 9.2.4.1.6
Rewrite as .
Step 9.2.4.1.7
Rewrite as .
Step 9.2.4.1.7.1
Factor out of .
Step 9.2.4.1.7.2
Rewrite as .
Step 9.2.4.1.8
Pull terms out from under the radical.
Step 9.2.4.1.9
Move to the left of .
Step 9.2.4.2
Multiply by .
Step 9.2.4.3
Change the to .
Step 9.2.4.4
Rewrite as .
Step 9.2.4.5
Factor out of .
Step 9.2.4.6
Factor out of .
Step 9.2.4.7
Move the negative in front of the fraction.
Step 9.2.5
Simplify the expression to solve for the portion of the .
Step 9.2.5.1
Simplify the numerator.
Step 9.2.5.1.1
Raise to the power of .
Step 9.2.5.1.2
Multiply .
Step 9.2.5.1.2.1
Multiply by .
Step 9.2.5.1.2.2
Multiply by .
Step 9.2.5.1.3
Subtract from .
Step 9.2.5.1.4
Rewrite as .
Step 9.2.5.1.5
Rewrite as .
Step 9.2.5.1.6
Rewrite as .
Step 9.2.5.1.7
Rewrite as .
Step 9.2.5.1.7.1
Factor out of .
Step 9.2.5.1.7.2
Rewrite as .
Step 9.2.5.1.8
Pull terms out from under the radical.
Step 9.2.5.1.9
Move to the left of .
Step 9.2.5.2
Multiply by .
Step 9.2.5.3
Change the to .
Step 9.2.5.4
Rewrite as .
Step 9.2.5.5
Factor out of .
Step 9.2.5.6
Factor out of .
Step 9.2.5.7
Move the negative in front of the fraction.
Step 9.2.6
The final answer is the combination of both solutions.
Step 10
The final solution is all the values that make true.