Enter a problem...
Algebra Examples
Step 1
To divide by a fraction, multiply by its reciprocal.
Step 2
Step 2.1
Rewrite as .
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3
Step 3.1
Rewrite as .
Step 3.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.3
Rewrite the polynomial.
Step 3.4
Factor using the perfect square trinomial rule , where and .
Step 4
Step 4.1
Factor out of .
Step 4.1.1
Factor out of .
Step 4.1.2
Factor out of .
Step 4.1.3
Factor out of .
Step 4.1.4
Factor out of .
Step 4.1.5
Factor out of .
Step 4.2
Factor using the AC method.
Step 4.2.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 4.2.2
Write the factored form using these integers.
Step 5
Combine.
Step 6
Step 6.1
Factor out of .
Step 6.2
Cancel the common factors.
Step 6.2.1
Factor out of .
Step 6.2.2
Cancel the common factor.
Step 6.2.3
Rewrite the expression.
Step 7
Step 7.1
Factor out of .
Step 7.2
Cancel the common factors.
Step 7.2.1
Factor out of .
Step 7.2.2
Cancel the common factor.
Step 7.2.3
Rewrite the expression.
Step 8
Step 8.1
Factor out of .
Step 8.2
Rewrite as .
Step 8.3
Factor out of .
Step 8.4
Reorder terms.
Step 8.5
Cancel the common factor.
Step 8.6
Rewrite the expression.
Step 9
Multiply by .
Step 10
Move the negative in front of the fraction.