Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Rewrite the expression using the negative exponent rule .
Step 3
Rewrite as .
Step 4
Rewrite as .
Step 5
Rewrite as .
Step 6
Rewrite as .
Step 7
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 8
Step 8.1
Apply the product rule to .
Step 8.2
One to any power is one.
Step 8.3
Simplify the denominator.
Step 8.3.1
Multiply the exponents in .
Step 8.3.1.1
Apply the power rule and multiply exponents, .
Step 8.3.1.2
Cancel the common factor of .
Step 8.3.1.2.1
Cancel the common factor.
Step 8.3.1.2.2
Rewrite the expression.
Step 8.3.2
Simplify.
Step 8.4
Combine.
Step 8.5
Multiply by .
Step 8.6
Move to the left of .
Step 8.7
Multiply by .
Step 8.8
Apply the product rule to .
Step 8.9
One to any power is one.
Step 8.10
Raise to the power of .
Step 9
To write as a fraction with a common denominator, multiply by .
Step 10
To write as a fraction with a common denominator, multiply by .
Step 11
Step 11.1
Multiply by .
Step 11.2
Multiply by .
Step 11.3
Reorder the factors of .
Step 12
Combine the numerators over the common denominator.
Step 13
To write as a fraction with a common denominator, multiply by .
Step 14
To write as a fraction with a common denominator, multiply by .
Step 15
Step 15.1
Multiply by .
Step 15.2
Raise to the power of .
Step 15.3
Use the power rule to combine exponents.
Step 15.4
Write as a fraction with a common denominator.
Step 15.5
Combine the numerators over the common denominator.
Step 15.6
Add and .
Step 15.7
Multiply by .
Step 15.8
Raise to the power of .
Step 15.9
Use the power rule to combine exponents.
Step 15.10
Write as a fraction with a common denominator.
Step 15.11
Combine the numerators over the common denominator.
Step 15.12
Add and .
Step 16
Combine the numerators over the common denominator.
Step 17
Step 17.1
Factor out of .
Step 17.1.1
Factor out of .
Step 17.1.2
Raise to the power of .
Step 17.1.3
Factor out of .
Step 17.1.4
Factor out of .
Step 17.1.5
Multiply by .
Step 17.2
Move to the denominator using the negative exponent rule .
Step 17.3
Simplify the denominator.
Step 17.3.1
Multiply by by adding the exponents.
Step 17.3.1.1
Move .
Step 17.3.1.2
Use the power rule to combine exponents.
Step 17.3.1.3
Combine the numerators over the common denominator.
Step 17.3.1.4
Add and .
Step 17.3.1.5
Divide by .
Step 17.3.2
Simplify .
Step 18
To write as a fraction with a common denominator, multiply by .
Step 19
To write as a fraction with a common denominator, multiply by .
Step 20
Step 20.1
Multiply by .
Step 20.2
Multiply by .
Step 20.3
Multiply by .
Step 21
Combine the numerators over the common denominator.
Step 22
Step 22.1
Apply the distributive property.
Step 22.2
Multiply by .
Step 22.3
Move to the left of .
Step 23
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 24
Step 24.1
Set equal to .
Step 24.2
Solve for .
Step 24.2.1
Set the numerator equal to zero.
Step 24.2.2
Solve the equation for .
Step 24.2.2.1
Subtract from both sides of the equation.
Step 24.2.2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 24.2.2.3
Simplify the exponent.
Step 24.2.2.3.1
Simplify the left side.
Step 24.2.2.3.1.1
Simplify .
Step 24.2.2.3.1.1.1
Apply the product rule to .
Step 24.2.2.3.1.1.2
Raise to the power of .
Step 24.2.2.3.1.1.3
Multiply by .
Step 24.2.2.3.1.1.4
Multiply the exponents in .
Step 24.2.2.3.1.1.4.1
Apply the power rule and multiply exponents, .
Step 24.2.2.3.1.1.4.2
Cancel the common factor of .
Step 24.2.2.3.1.1.4.2.1
Cancel the common factor.
Step 24.2.2.3.1.1.4.2.2
Rewrite the expression.
Step 24.2.2.3.1.1.5
Simplify.
Step 24.2.2.3.2
Simplify the right side.
Step 24.2.2.3.2.1
Raise to the power of .
Step 25
Step 25.1
Set equal to .
Step 25.2
Solve for .
Step 25.2.1
Multiply both sides by .
Step 25.2.2
Simplify.
Step 25.2.2.1
Simplify the left side.
Step 25.2.2.1.1
Simplify .
Step 25.2.2.1.1.1
Rewrite using the commutative property of multiplication.
Step 25.2.2.1.1.2
Cancel the common factor of .
Step 25.2.2.1.1.2.1
Factor out of .
Step 25.2.2.1.1.2.2
Cancel the common factor.
Step 25.2.2.1.1.2.3
Rewrite the expression.
Step 25.2.2.1.1.3
Cancel the common factor of .
Step 25.2.2.1.1.3.1
Cancel the common factor.
Step 25.2.2.1.1.3.2
Rewrite the expression.
Step 25.2.2.1.1.4
Simplify the expression.
Step 25.2.2.1.1.4.1
Move .
Step 25.2.2.1.1.4.2
Reorder and .
Step 25.2.2.2
Simplify the right side.
Step 25.2.2.2.1
Multiply .
Step 25.2.2.2.1.1
Multiply by .
Step 25.2.2.2.1.2
Multiply by .
Step 25.2.3
Solve for .
Step 25.2.3.1
Find a common factor that is present in each term.
Step 25.2.3.2
Substitute for .
Step 25.2.3.3
Solve for .
Step 25.2.3.3.1
Multiply by .
Step 25.2.3.3.2
Use the quadratic formula to find the solutions.
Step 25.2.3.3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 25.2.3.3.4
Simplify.
Step 25.2.3.3.4.1
Simplify the numerator.
Step 25.2.3.3.4.1.1
Raise to the power of .
Step 25.2.3.3.4.1.2
Multiply .
Step 25.2.3.3.4.1.2.1
Multiply by .
Step 25.2.3.3.4.1.2.2
Multiply by .
Step 25.2.3.3.4.1.3
Subtract from .
Step 25.2.3.3.4.1.4
Rewrite as .
Step 25.2.3.3.4.1.5
Rewrite as .
Step 25.2.3.3.4.1.6
Rewrite as .
Step 25.2.3.3.4.1.7
Rewrite as .
Step 25.2.3.3.4.1.7.1
Factor out of .
Step 25.2.3.3.4.1.7.2
Rewrite as .
Step 25.2.3.3.4.1.8
Pull terms out from under the radical.
Step 25.2.3.3.4.1.9
Move to the left of .
Step 25.2.3.3.4.2
Multiply by .
Step 25.2.3.3.5
Simplify the expression to solve for the portion of the .
Step 25.2.3.3.5.1
Simplify the numerator.
Step 25.2.3.3.5.1.1
Raise to the power of .
Step 25.2.3.3.5.1.2
Multiply .
Step 25.2.3.3.5.1.2.1
Multiply by .
Step 25.2.3.3.5.1.2.2
Multiply by .
Step 25.2.3.3.5.1.3
Subtract from .
Step 25.2.3.3.5.1.4
Rewrite as .
Step 25.2.3.3.5.1.5
Rewrite as .
Step 25.2.3.3.5.1.6
Rewrite as .
Step 25.2.3.3.5.1.7
Rewrite as .
Step 25.2.3.3.5.1.7.1
Factor out of .
Step 25.2.3.3.5.1.7.2
Rewrite as .
Step 25.2.3.3.5.1.8
Pull terms out from under the radical.
Step 25.2.3.3.5.1.9
Move to the left of .
Step 25.2.3.3.5.2
Multiply by .
Step 25.2.3.3.5.3
Change the to .
Step 25.2.3.3.5.4
Rewrite as .
Step 25.2.3.3.5.5
Factor out of .
Step 25.2.3.3.5.6
Factor out of .
Step 25.2.3.3.5.7
Move the negative in front of the fraction.
Step 25.2.3.3.6
Simplify the expression to solve for the portion of the .
Step 25.2.3.3.6.1
Simplify the numerator.
Step 25.2.3.3.6.1.1
Raise to the power of .
Step 25.2.3.3.6.1.2
Multiply .
Step 25.2.3.3.6.1.2.1
Multiply by .
Step 25.2.3.3.6.1.2.2
Multiply by .
Step 25.2.3.3.6.1.3
Subtract from .
Step 25.2.3.3.6.1.4
Rewrite as .
Step 25.2.3.3.6.1.5
Rewrite as .
Step 25.2.3.3.6.1.6
Rewrite as .
Step 25.2.3.3.6.1.7
Rewrite as .
Step 25.2.3.3.6.1.7.1
Factor out of .
Step 25.2.3.3.6.1.7.2
Rewrite as .
Step 25.2.3.3.6.1.8
Pull terms out from under the radical.
Step 25.2.3.3.6.1.9
Move to the left of .
Step 25.2.3.3.6.2
Multiply by .
Step 25.2.3.3.6.3
Change the to .
Step 25.2.3.3.6.4
Rewrite as .
Step 25.2.3.3.6.5
Factor out of .
Step 25.2.3.3.6.6
Factor out of .
Step 25.2.3.3.6.7
Move the negative in front of the fraction.
Step 25.2.3.3.7
The final answer is the combination of both solutions.
Step 25.2.3.4
Substitute for .
Step 25.2.3.5
Solve for for .
Step 25.2.3.5.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 25.2.3.5.2
Simplify the exponent.
Step 25.2.3.5.2.1
Simplify the left side.
Step 25.2.3.5.2.1.1
Simplify .
Step 25.2.3.5.2.1.1.1
Multiply the exponents in .
Step 25.2.3.5.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 25.2.3.5.2.1.1.1.2
Cancel the common factor of .
Step 25.2.3.5.2.1.1.1.2.1
Cancel the common factor.
Step 25.2.3.5.2.1.1.1.2.2
Rewrite the expression.
Step 25.2.3.5.2.1.1.2
Simplify.
Step 25.2.3.5.2.2
Simplify the right side.
Step 25.2.3.5.2.2.1
Simplify .
Step 25.2.3.5.2.2.1.1
Use the power rule to distribute the exponent.
Step 25.2.3.5.2.2.1.1.1
Apply the product rule to .
Step 25.2.3.5.2.2.1.1.2
Apply the product rule to .
Step 25.2.3.5.2.2.1.2
Simplify the expression.
Step 25.2.3.5.2.2.1.2.1
Raise to the power of .
Step 25.2.3.5.2.2.1.2.2
Multiply by .
Step 25.2.3.5.2.2.1.2.3
Raise to the power of .
Step 25.2.3.5.2.2.1.2.4
Rewrite as .
Step 25.2.3.5.2.2.1.3
Expand using the FOIL Method.
Step 25.2.3.5.2.2.1.3.1
Apply the distributive property.
Step 25.2.3.5.2.2.1.3.2
Apply the distributive property.
Step 25.2.3.5.2.2.1.3.3
Apply the distributive property.
Step 25.2.3.5.2.2.1.4
Simplify and combine like terms.
Step 25.2.3.5.2.2.1.4.1
Simplify each term.
Step 25.2.3.5.2.2.1.4.1.1
Multiply by .
Step 25.2.3.5.2.2.1.4.1.2
Multiply by .
Step 25.2.3.5.2.2.1.4.1.3
Multiply by .
Step 25.2.3.5.2.2.1.4.1.4
Multiply .
Step 25.2.3.5.2.2.1.4.1.4.1
Multiply by .
Step 25.2.3.5.2.2.1.4.1.4.2
Raise to the power of .
Step 25.2.3.5.2.2.1.4.1.4.3
Raise to the power of .
Step 25.2.3.5.2.2.1.4.1.4.4
Use the power rule to combine exponents.
Step 25.2.3.5.2.2.1.4.1.4.5
Add and .
Step 25.2.3.5.2.2.1.4.1.4.6
Raise to the power of .
Step 25.2.3.5.2.2.1.4.1.4.7
Raise to the power of .
Step 25.2.3.5.2.2.1.4.1.4.8
Use the power rule to combine exponents.
Step 25.2.3.5.2.2.1.4.1.4.9
Add and .
Step 25.2.3.5.2.2.1.4.1.5
Rewrite as .
Step 25.2.3.5.2.2.1.4.1.6
Multiply by .
Step 25.2.3.5.2.2.1.4.1.7
Rewrite as .
Step 25.2.3.5.2.2.1.4.1.7.1
Use to rewrite as .
Step 25.2.3.5.2.2.1.4.1.7.2
Apply the power rule and multiply exponents, .
Step 25.2.3.5.2.2.1.4.1.7.3
Combine and .
Step 25.2.3.5.2.2.1.4.1.7.4
Cancel the common factor of .
Step 25.2.3.5.2.2.1.4.1.7.4.1
Cancel the common factor.
Step 25.2.3.5.2.2.1.4.1.7.4.2
Rewrite the expression.
Step 25.2.3.5.2.2.1.4.1.7.5
Evaluate the exponent.
Step 25.2.3.5.2.2.1.4.1.8
Multiply by .
Step 25.2.3.5.2.2.1.4.2
Subtract from .
Step 25.2.3.5.2.2.1.4.3
Subtract from .
Step 25.2.3.5.2.2.1.5
Reorder and .
Step 25.2.3.5.2.2.1.6
Cancel the common factor of and .
Step 25.2.3.5.2.2.1.6.1
Factor out of .
Step 25.2.3.5.2.2.1.6.2
Factor out of .
Step 25.2.3.5.2.2.1.6.3
Factor out of .
Step 25.2.3.5.2.2.1.6.4
Cancel the common factors.
Step 25.2.3.5.2.2.1.6.4.1
Factor out of .
Step 25.2.3.5.2.2.1.6.4.2
Cancel the common factor.
Step 25.2.3.5.2.2.1.6.4.3
Rewrite the expression.
Step 25.2.3.5.2.2.1.7
Rewrite as .
Step 25.2.3.5.2.2.1.8
Factor out of .
Step 25.2.3.5.2.2.1.9
Factor out of .
Step 25.2.3.5.2.2.1.10
Move the negative in front of the fraction.
Step 25.2.3.6
Solve for for .
Step 25.2.3.6.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 25.2.3.6.2
Simplify the exponent.
Step 25.2.3.6.2.1
Simplify the left side.
Step 25.2.3.6.2.1.1
Simplify .
Step 25.2.3.6.2.1.1.1
Multiply the exponents in .
Step 25.2.3.6.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 25.2.3.6.2.1.1.1.2
Cancel the common factor of .
Step 25.2.3.6.2.1.1.1.2.1
Cancel the common factor.
Step 25.2.3.6.2.1.1.1.2.2
Rewrite the expression.
Step 25.2.3.6.2.1.1.2
Simplify.
Step 25.2.3.6.2.2
Simplify the right side.
Step 25.2.3.6.2.2.1
Simplify .
Step 25.2.3.6.2.2.1.1
Use the power rule to distribute the exponent.
Step 25.2.3.6.2.2.1.1.1
Apply the product rule to .
Step 25.2.3.6.2.2.1.1.2
Apply the product rule to .
Step 25.2.3.6.2.2.1.2
Simplify the expression.
Step 25.2.3.6.2.2.1.2.1
Raise to the power of .
Step 25.2.3.6.2.2.1.2.2
Multiply by .
Step 25.2.3.6.2.2.1.2.3
Raise to the power of .
Step 25.2.3.6.2.2.1.2.4
Rewrite as .
Step 25.2.3.6.2.2.1.3
Expand using the FOIL Method.
Step 25.2.3.6.2.2.1.3.1
Apply the distributive property.
Step 25.2.3.6.2.2.1.3.2
Apply the distributive property.
Step 25.2.3.6.2.2.1.3.3
Apply the distributive property.
Step 25.2.3.6.2.2.1.4
Simplify and combine like terms.
Step 25.2.3.6.2.2.1.4.1
Simplify each term.
Step 25.2.3.6.2.2.1.4.1.1
Multiply by .
Step 25.2.3.6.2.2.1.4.1.2
Multiply by .
Step 25.2.3.6.2.2.1.4.1.3
Multiply by .
Step 25.2.3.6.2.2.1.4.1.4
Multiply .
Step 25.2.3.6.2.2.1.4.1.4.1
Multiply by .
Step 25.2.3.6.2.2.1.4.1.4.2
Raise to the power of .
Step 25.2.3.6.2.2.1.4.1.4.3
Raise to the power of .
Step 25.2.3.6.2.2.1.4.1.4.4
Use the power rule to combine exponents.
Step 25.2.3.6.2.2.1.4.1.4.5
Add and .
Step 25.2.3.6.2.2.1.4.1.4.6
Raise to the power of .
Step 25.2.3.6.2.2.1.4.1.4.7
Raise to the power of .
Step 25.2.3.6.2.2.1.4.1.4.8
Use the power rule to combine exponents.
Step 25.2.3.6.2.2.1.4.1.4.9
Add and .
Step 25.2.3.6.2.2.1.4.1.5
Rewrite as .
Step 25.2.3.6.2.2.1.4.1.6
Multiply by .
Step 25.2.3.6.2.2.1.4.1.7
Rewrite as .
Step 25.2.3.6.2.2.1.4.1.7.1
Use to rewrite as .
Step 25.2.3.6.2.2.1.4.1.7.2
Apply the power rule and multiply exponents, .
Step 25.2.3.6.2.2.1.4.1.7.3
Combine and .
Step 25.2.3.6.2.2.1.4.1.7.4
Cancel the common factor of .
Step 25.2.3.6.2.2.1.4.1.7.4.1
Cancel the common factor.
Step 25.2.3.6.2.2.1.4.1.7.4.2
Rewrite the expression.
Step 25.2.3.6.2.2.1.4.1.7.5
Evaluate the exponent.
Step 25.2.3.6.2.2.1.4.1.8
Multiply by .
Step 25.2.3.6.2.2.1.4.2
Subtract from .
Step 25.2.3.6.2.2.1.4.3
Add and .
Step 25.2.3.6.2.2.1.5
Reorder and .
Step 25.2.3.6.2.2.1.6
Cancel the common factor of and .
Step 25.2.3.6.2.2.1.6.1
Factor out of .
Step 25.2.3.6.2.2.1.6.2
Factor out of .
Step 25.2.3.6.2.2.1.6.3
Factor out of .
Step 25.2.3.6.2.2.1.6.4
Cancel the common factors.
Step 25.2.3.6.2.2.1.6.4.1
Factor out of .
Step 25.2.3.6.2.2.1.6.4.2
Cancel the common factor.
Step 25.2.3.6.2.2.1.6.4.3
Rewrite the expression.
Step 25.2.3.6.2.2.1.7
Rewrite as .
Step 25.2.3.6.2.2.1.8
Factor out of .
Step 25.2.3.6.2.2.1.9
Factor out of .
Step 25.2.3.6.2.2.1.10
Move the negative in front of the fraction.
Step 25.2.3.7
List all of the solutions.
Step 26
The final solution is all the values that make true.