Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Subtract from .
Step 3
Step 3.1
Factor out of .
Step 3.2
Factor out of .
Step 3.3
Factor out of .
Step 4
Rewrite as .
Step 5
Rewrite as .
Step 6
Since both terms are perfect cubes, factor using the difference of cubes formula, where and .
Step 7
Step 7.1
Simplify.
Step 7.1.1
Multiply the exponents in .
Step 7.1.1.1
Apply the power rule and multiply exponents, .
Step 7.1.1.2
Cancel the common factor of .
Step 7.1.1.2.1
Cancel the common factor.
Step 7.1.1.2.2
Rewrite the expression.
Step 7.1.2
Simplify.
Step 7.1.3
Move to the left of .
Step 7.1.4
Raise to the power of .
Step 7.2
Remove unnecessary parentheses.
Step 8
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 9
Step 9.1
Set equal to .
Step 9.2
Solve for .
Step 9.2.1
Add to both sides of the equation.
Step 9.2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 9.2.3
Simplify the exponent.
Step 9.2.3.1
Simplify the left side.
Step 9.2.3.1.1
Simplify .
Step 9.2.3.1.1.1
Multiply the exponents in .
Step 9.2.3.1.1.1.1
Apply the power rule and multiply exponents, .
Step 9.2.3.1.1.1.2
Cancel the common factor of .
Step 9.2.3.1.1.1.2.1
Cancel the common factor.
Step 9.2.3.1.1.1.2.2
Rewrite the expression.
Step 9.2.3.1.1.2
Simplify.
Step 9.2.3.2
Simplify the right side.
Step 9.2.3.2.1
Raise to the power of .
Step 10
Step 10.1
Set equal to .
Step 10.2
Solve for .
Step 10.2.1
Find a common factor that is present in each term.
Step 10.2.2
Substitute for .
Step 10.2.3
Solve for .
Step 10.2.3.1
Multiply by .
Step 10.2.3.2
Use the quadratic formula to find the solutions.
Step 10.2.3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 10.2.3.4
Simplify.
Step 10.2.3.4.1
Simplify the numerator.
Step 10.2.3.4.1.1
Raise to the power of .
Step 10.2.3.4.1.2
Multiply .
Step 10.2.3.4.1.2.1
Multiply by .
Step 10.2.3.4.1.2.2
Multiply by .
Step 10.2.3.4.1.3
Subtract from .
Step 10.2.3.4.1.4
Rewrite as .
Step 10.2.3.4.1.5
Rewrite as .
Step 10.2.3.4.1.6
Rewrite as .
Step 10.2.3.4.1.7
Rewrite as .
Step 10.2.3.4.1.7.1
Factor out of .
Step 10.2.3.4.1.7.2
Rewrite as .
Step 10.2.3.4.1.8
Pull terms out from under the radical.
Step 10.2.3.4.1.9
Move to the left of .
Step 10.2.3.4.2
Multiply by .
Step 10.2.3.5
Simplify the expression to solve for the portion of the .
Step 10.2.3.5.1
Simplify the numerator.
Step 10.2.3.5.1.1
Raise to the power of .
Step 10.2.3.5.1.2
Multiply .
Step 10.2.3.5.1.2.1
Multiply by .
Step 10.2.3.5.1.2.2
Multiply by .
Step 10.2.3.5.1.3
Subtract from .
Step 10.2.3.5.1.4
Rewrite as .
Step 10.2.3.5.1.5
Rewrite as .
Step 10.2.3.5.1.6
Rewrite as .
Step 10.2.3.5.1.7
Rewrite as .
Step 10.2.3.5.1.7.1
Factor out of .
Step 10.2.3.5.1.7.2
Rewrite as .
Step 10.2.3.5.1.8
Pull terms out from under the radical.
Step 10.2.3.5.1.9
Move to the left of .
Step 10.2.3.5.2
Multiply by .
Step 10.2.3.5.3
Change the to .
Step 10.2.3.5.4
Rewrite as .
Step 10.2.3.5.5
Factor out of .
Step 10.2.3.5.6
Factor out of .
Step 10.2.3.5.7
Move the negative in front of the fraction.
Step 10.2.3.6
Simplify the expression to solve for the portion of the .
Step 10.2.3.6.1
Simplify the numerator.
Step 10.2.3.6.1.1
Raise to the power of .
Step 10.2.3.6.1.2
Multiply .
Step 10.2.3.6.1.2.1
Multiply by .
Step 10.2.3.6.1.2.2
Multiply by .
Step 10.2.3.6.1.3
Subtract from .
Step 10.2.3.6.1.4
Rewrite as .
Step 10.2.3.6.1.5
Rewrite as .
Step 10.2.3.6.1.6
Rewrite as .
Step 10.2.3.6.1.7
Rewrite as .
Step 10.2.3.6.1.7.1
Factor out of .
Step 10.2.3.6.1.7.2
Rewrite as .
Step 10.2.3.6.1.8
Pull terms out from under the radical.
Step 10.2.3.6.1.9
Move to the left of .
Step 10.2.3.6.2
Multiply by .
Step 10.2.3.6.3
Change the to .
Step 10.2.3.6.4
Rewrite as .
Step 10.2.3.6.5
Factor out of .
Step 10.2.3.6.6
Factor out of .
Step 10.2.3.6.7
Move the negative in front of the fraction.
Step 10.2.3.7
The final answer is the combination of both solutions.
Step 10.2.4
Substitute for .
Step 10.2.5
Solve for for .
Step 10.2.5.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 10.2.5.2
Simplify the exponent.
Step 10.2.5.2.1
Simplify the left side.
Step 10.2.5.2.1.1
Simplify .
Step 10.2.5.2.1.1.1
Multiply the exponents in .
Step 10.2.5.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 10.2.5.2.1.1.1.2
Cancel the common factor of .
Step 10.2.5.2.1.1.1.2.1
Cancel the common factor.
Step 10.2.5.2.1.1.1.2.2
Rewrite the expression.
Step 10.2.5.2.1.1.2
Simplify.
Step 10.2.5.2.2
Simplify the right side.
Step 10.2.5.2.2.1
Simplify .
Step 10.2.5.2.2.1.1
Use the power rule to distribute the exponent.
Step 10.2.5.2.2.1.1.1
Apply the product rule to .
Step 10.2.5.2.2.1.1.2
Apply the product rule to .
Step 10.2.5.2.2.1.2
Simplify the expression.
Step 10.2.5.2.2.1.2.1
Raise to the power of .
Step 10.2.5.2.2.1.2.2
Multiply by .
Step 10.2.5.2.2.1.2.3
Raise to the power of .
Step 10.2.5.2.2.1.2.4
Rewrite as .
Step 10.2.5.2.2.1.3
Expand using the FOIL Method.
Step 10.2.5.2.2.1.3.1
Apply the distributive property.
Step 10.2.5.2.2.1.3.2
Apply the distributive property.
Step 10.2.5.2.2.1.3.3
Apply the distributive property.
Step 10.2.5.2.2.1.4
Simplify and combine like terms.
Step 10.2.5.2.2.1.4.1
Simplify each term.
Step 10.2.5.2.2.1.4.1.1
Multiply by .
Step 10.2.5.2.2.1.4.1.2
Multiply by .
Step 10.2.5.2.2.1.4.1.3
Multiply by .
Step 10.2.5.2.2.1.4.1.4
Multiply .
Step 10.2.5.2.2.1.4.1.4.1
Multiply by .
Step 10.2.5.2.2.1.4.1.4.2
Raise to the power of .
Step 10.2.5.2.2.1.4.1.4.3
Raise to the power of .
Step 10.2.5.2.2.1.4.1.4.4
Use the power rule to combine exponents.
Step 10.2.5.2.2.1.4.1.4.5
Add and .
Step 10.2.5.2.2.1.4.1.4.6
Raise to the power of .
Step 10.2.5.2.2.1.4.1.4.7
Raise to the power of .
Step 10.2.5.2.2.1.4.1.4.8
Use the power rule to combine exponents.
Step 10.2.5.2.2.1.4.1.4.9
Add and .
Step 10.2.5.2.2.1.4.1.5
Rewrite as .
Step 10.2.5.2.2.1.4.1.6
Multiply by .
Step 10.2.5.2.2.1.4.1.7
Rewrite as .
Step 10.2.5.2.2.1.4.1.7.1
Use to rewrite as .
Step 10.2.5.2.2.1.4.1.7.2
Apply the power rule and multiply exponents, .
Step 10.2.5.2.2.1.4.1.7.3
Combine and .
Step 10.2.5.2.2.1.4.1.7.4
Cancel the common factor of .
Step 10.2.5.2.2.1.4.1.7.4.1
Cancel the common factor.
Step 10.2.5.2.2.1.4.1.7.4.2
Rewrite the expression.
Step 10.2.5.2.2.1.4.1.7.5
Evaluate the exponent.
Step 10.2.5.2.2.1.4.1.8
Multiply by .
Step 10.2.5.2.2.1.4.2
Subtract from .
Step 10.2.5.2.2.1.4.3
Subtract from .
Step 10.2.5.2.2.1.5
Reorder and .
Step 10.2.5.2.2.1.6
Cancel the common factor of and .
Step 10.2.5.2.2.1.6.1
Factor out of .
Step 10.2.5.2.2.1.6.2
Factor out of .
Step 10.2.5.2.2.1.6.3
Factor out of .
Step 10.2.5.2.2.1.6.4
Cancel the common factors.
Step 10.2.5.2.2.1.6.4.1
Factor out of .
Step 10.2.5.2.2.1.6.4.2
Cancel the common factor.
Step 10.2.5.2.2.1.6.4.3
Rewrite the expression.
Step 10.2.5.2.2.1.7
Rewrite as .
Step 10.2.5.2.2.1.8
Factor out of .
Step 10.2.5.2.2.1.9
Factor out of .
Step 10.2.5.2.2.1.10
Move the negative in front of the fraction.
Step 10.2.6
Solve for for .
Step 10.2.6.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 10.2.6.2
Simplify the exponent.
Step 10.2.6.2.1
Simplify the left side.
Step 10.2.6.2.1.1
Simplify .
Step 10.2.6.2.1.1.1
Multiply the exponents in .
Step 10.2.6.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 10.2.6.2.1.1.1.2
Cancel the common factor of .
Step 10.2.6.2.1.1.1.2.1
Cancel the common factor.
Step 10.2.6.2.1.1.1.2.2
Rewrite the expression.
Step 10.2.6.2.1.1.2
Simplify.
Step 10.2.6.2.2
Simplify the right side.
Step 10.2.6.2.2.1
Simplify .
Step 10.2.6.2.2.1.1
Use the power rule to distribute the exponent.
Step 10.2.6.2.2.1.1.1
Apply the product rule to .
Step 10.2.6.2.2.1.1.2
Apply the product rule to .
Step 10.2.6.2.2.1.2
Simplify the expression.
Step 10.2.6.2.2.1.2.1
Raise to the power of .
Step 10.2.6.2.2.1.2.2
Multiply by .
Step 10.2.6.2.2.1.2.3
Raise to the power of .
Step 10.2.6.2.2.1.2.4
Rewrite as .
Step 10.2.6.2.2.1.3
Expand using the FOIL Method.
Step 10.2.6.2.2.1.3.1
Apply the distributive property.
Step 10.2.6.2.2.1.3.2
Apply the distributive property.
Step 10.2.6.2.2.1.3.3
Apply the distributive property.
Step 10.2.6.2.2.1.4
Simplify and combine like terms.
Step 10.2.6.2.2.1.4.1
Simplify each term.
Step 10.2.6.2.2.1.4.1.1
Multiply by .
Step 10.2.6.2.2.1.4.1.2
Multiply by .
Step 10.2.6.2.2.1.4.1.3
Multiply by .
Step 10.2.6.2.2.1.4.1.4
Multiply .
Step 10.2.6.2.2.1.4.1.4.1
Multiply by .
Step 10.2.6.2.2.1.4.1.4.2
Raise to the power of .
Step 10.2.6.2.2.1.4.1.4.3
Raise to the power of .
Step 10.2.6.2.2.1.4.1.4.4
Use the power rule to combine exponents.
Step 10.2.6.2.2.1.4.1.4.5
Add and .
Step 10.2.6.2.2.1.4.1.4.6
Raise to the power of .
Step 10.2.6.2.2.1.4.1.4.7
Raise to the power of .
Step 10.2.6.2.2.1.4.1.4.8
Use the power rule to combine exponents.
Step 10.2.6.2.2.1.4.1.4.9
Add and .
Step 10.2.6.2.2.1.4.1.5
Rewrite as .
Step 10.2.6.2.2.1.4.1.6
Multiply by .
Step 10.2.6.2.2.1.4.1.7
Rewrite as .
Step 10.2.6.2.2.1.4.1.7.1
Use to rewrite as .
Step 10.2.6.2.2.1.4.1.7.2
Apply the power rule and multiply exponents, .
Step 10.2.6.2.2.1.4.1.7.3
Combine and .
Step 10.2.6.2.2.1.4.1.7.4
Cancel the common factor of .
Step 10.2.6.2.2.1.4.1.7.4.1
Cancel the common factor.
Step 10.2.6.2.2.1.4.1.7.4.2
Rewrite the expression.
Step 10.2.6.2.2.1.4.1.7.5
Evaluate the exponent.
Step 10.2.6.2.2.1.4.1.8
Multiply by .
Step 10.2.6.2.2.1.4.2
Subtract from .
Step 10.2.6.2.2.1.4.3
Add and .
Step 10.2.6.2.2.1.5
Reorder and .
Step 10.2.6.2.2.1.6
Cancel the common factor of and .
Step 10.2.6.2.2.1.6.1
Factor out of .
Step 10.2.6.2.2.1.6.2
Factor out of .
Step 10.2.6.2.2.1.6.3
Factor out of .
Step 10.2.6.2.2.1.6.4
Cancel the common factors.
Step 10.2.6.2.2.1.6.4.1
Factor out of .
Step 10.2.6.2.2.1.6.4.2
Cancel the common factor.
Step 10.2.6.2.2.1.6.4.3
Rewrite the expression.
Step 10.2.6.2.2.1.7
Rewrite as .
Step 10.2.6.2.2.1.8
Factor out of .
Step 10.2.6.2.2.1.9
Factor out of .
Step 10.2.6.2.2.1.10
Move the negative in front of the fraction.
Step 10.2.7
List all of the solutions.
Step 11
The final solution is all the values that make true.