Algebra Examples

Solve for x ((5-3i)(x+iy))/(4-5i)=(2+i)^2-(3-4i)^2
Step 1
Multiply both sides by .
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Simplify .
Tap for more steps...
Step 2.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.1.1.1.1
Cancel the common factor.
Step 2.1.1.1.2
Rewrite the expression.
Step 2.1.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 2.1.1.2.1
Apply the distributive property.
Step 2.1.1.2.2
Apply the distributive property.
Step 2.1.1.2.3
Apply the distributive property.
Step 2.1.1.3
Simplify terms.
Tap for more steps...
Step 2.1.1.3.1
Simplify each term.
Tap for more steps...
Step 2.1.1.3.1.1
Multiply .
Tap for more steps...
Step 2.1.1.3.1.1.1
Raise to the power of .
Step 2.1.1.3.1.1.2
Raise to the power of .
Step 2.1.1.3.1.1.3
Use the power rule to combine exponents.
Step 2.1.1.3.1.1.4
Add and .
Step 2.1.1.3.1.2
Rewrite as .
Step 2.1.1.3.1.3
Multiply by .
Step 2.1.1.3.2
Reorder.
Tap for more steps...
Step 2.1.1.3.2.1
Move .
Step 2.1.1.3.2.2
Move .
Step 2.1.1.3.2.3
Move .
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Simplify .
Tap for more steps...
Step 2.2.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Apply the distributive property.
Step 2.2.1.1.3
Apply the distributive property.
Step 2.2.1.2
Simplify terms.
Tap for more steps...
Step 2.2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.2.1.2.1.1
Move to the left of .
Step 2.2.1.2.1.2
Multiply by .
Step 2.2.1.2.1.3
Multiply by .
Step 2.2.1.2.2
Reorder factors in .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Simplify .
Tap for more steps...
Step 3.1.1
Simplify each term.
Tap for more steps...
Step 3.1.1.1
Rewrite as .
Step 3.1.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.1.1.2.1
Apply the distributive property.
Step 3.1.1.2.2
Apply the distributive property.
Step 3.1.1.2.3
Apply the distributive property.
Step 3.1.1.3
Simplify and combine like terms.
Tap for more steps...
Step 3.1.1.3.1
Simplify each term.
Tap for more steps...
Step 3.1.1.3.1.1
Multiply by .
Step 3.1.1.3.1.2
Move to the left of .
Step 3.1.1.3.1.3
Multiply .
Tap for more steps...
Step 3.1.1.3.1.3.1
Raise to the power of .
Step 3.1.1.3.1.3.2
Raise to the power of .
Step 3.1.1.3.1.3.3
Use the power rule to combine exponents.
Step 3.1.1.3.1.3.4
Add and .
Step 3.1.1.3.1.4
Rewrite as .
Step 3.1.1.3.2
Subtract from .
Step 3.1.1.3.3
Add and .
Step 3.1.1.4
Apply the distributive property.
Step 3.1.1.5
Multiply by .
Step 3.1.1.6
Multiply by .
Step 3.1.1.7
Rewrite as .
Step 3.1.1.8
Expand using the FOIL Method.
Tap for more steps...
Step 3.1.1.8.1
Apply the distributive property.
Step 3.1.1.8.2
Apply the distributive property.
Step 3.1.1.8.3
Apply the distributive property.
Step 3.1.1.9
Simplify and combine like terms.
Tap for more steps...
Step 3.1.1.9.1
Simplify each term.
Tap for more steps...
Step 3.1.1.9.1.1
Multiply by .
Step 3.1.1.9.1.2
Move to the left of .
Step 3.1.1.9.1.3
Multiply .
Tap for more steps...
Step 3.1.1.9.1.3.1
Raise to the power of .
Step 3.1.1.9.1.3.2
Raise to the power of .
Step 3.1.1.9.1.3.3
Use the power rule to combine exponents.
Step 3.1.1.9.1.3.4
Add and .
Step 3.1.1.9.1.4
Rewrite as .
Step 3.1.1.9.2
Subtract from .
Step 3.1.1.9.3
Add and .
Step 3.1.1.10
Apply the distributive property.
Step 3.1.1.11
Multiply by .
Step 3.1.1.12
Multiply .
Tap for more steps...
Step 3.1.1.12.1
Multiply by .
Step 3.1.1.12.2
Raise to the power of .
Step 3.1.1.12.3
Raise to the power of .
Step 3.1.1.12.4
Use the power rule to combine exponents.
Step 3.1.1.12.5
Add and .
Step 3.1.1.13
Simplify each term.
Tap for more steps...
Step 3.1.1.13.1
Rewrite as .
Step 3.1.1.13.2
Multiply by .
Step 3.1.1.14
Rewrite as .
Step 3.1.1.15
Expand using the FOIL Method.
Tap for more steps...
Step 3.1.1.15.1
Apply the distributive property.
Step 3.1.1.15.2
Apply the distributive property.
Step 3.1.1.15.3
Apply the distributive property.
Step 3.1.1.16
Simplify and combine like terms.
Tap for more steps...
Step 3.1.1.16.1
Simplify each term.
Tap for more steps...
Step 3.1.1.16.1.1
Multiply by .
Step 3.1.1.16.1.2
Multiply by .
Step 3.1.1.16.1.3
Multiply by .
Step 3.1.1.16.1.4
Multiply .
Tap for more steps...
Step 3.1.1.16.1.4.1
Multiply by .
Step 3.1.1.16.1.4.2
Raise to the power of .
Step 3.1.1.16.1.4.3
Raise to the power of .
Step 3.1.1.16.1.4.4
Use the power rule to combine exponents.
Step 3.1.1.16.1.4.5
Add and .
Step 3.1.1.16.1.5
Rewrite as .
Step 3.1.1.16.1.6
Multiply by .
Step 3.1.1.16.2
Subtract from .
Step 3.1.1.16.3
Subtract from .
Step 3.1.1.17
Apply the distributive property.
Step 3.1.1.18
Multiply by .
Step 3.1.1.19
Multiply by .
Step 3.1.1.20
Rewrite as .
Step 3.1.1.21
Expand using the FOIL Method.
Tap for more steps...
Step 3.1.1.21.1
Apply the distributive property.
Step 3.1.1.21.2
Apply the distributive property.
Step 3.1.1.21.3
Apply the distributive property.
Step 3.1.1.22
Simplify and combine like terms.
Tap for more steps...
Step 3.1.1.22.1
Simplify each term.
Tap for more steps...
Step 3.1.1.22.1.1
Multiply by .
Step 3.1.1.22.1.2
Multiply by .
Step 3.1.1.22.1.3
Multiply by .
Step 3.1.1.22.1.4
Multiply .
Tap for more steps...
Step 3.1.1.22.1.4.1
Multiply by .
Step 3.1.1.22.1.4.2
Raise to the power of .
Step 3.1.1.22.1.4.3
Raise to the power of .
Step 3.1.1.22.1.4.4
Use the power rule to combine exponents.
Step 3.1.1.22.1.4.5
Add and .
Step 3.1.1.22.1.5
Rewrite as .
Step 3.1.1.22.1.6
Multiply by .
Step 3.1.1.22.2
Subtract from .
Step 3.1.1.22.3
Subtract from .
Step 3.1.1.23
Apply the distributive property.
Step 3.1.1.24
Multiply by .
Step 3.1.1.25
Multiply .
Tap for more steps...
Step 3.1.1.25.1
Multiply by .
Step 3.1.1.25.2
Raise to the power of .
Step 3.1.1.25.3
Raise to the power of .
Step 3.1.1.25.4
Use the power rule to combine exponents.
Step 3.1.1.25.5
Add and .
Step 3.1.1.26
Simplify each term.
Tap for more steps...
Step 3.1.1.26.1
Rewrite as .
Step 3.1.1.26.2
Multiply by .
Step 3.1.2
Simplify by adding terms.
Tap for more steps...
Step 3.1.2.1
Add and .
Step 3.1.2.2
Simplify by adding numbers.
Tap for more steps...
Step 3.1.2.2.1
Add and .
Step 3.1.2.2.2
Add and .
Step 3.1.2.3
Subtract from .
Step 3.1.2.4
Add and .
Step 3.1.2.5
Subtract from .
Step 3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.2.1
Subtract from both sides of the equation.
Step 3.2.2
Subtract from both sides of the equation.
Step 3.3
Factor out of .
Tap for more steps...
Step 3.3.1
Factor out of .
Step 3.3.2
Factor out of .
Step 3.3.3
Factor out of .
Step 3.4
Divide each term in by and simplify.
Tap for more steps...
Step 3.4.1
Divide each term in by .
Step 3.4.2
Simplify the left side.
Tap for more steps...
Step 3.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.1.1
Cancel the common factor.
Step 3.4.2.1.2
Divide by .
Step 3.4.3
Simplify the right side.
Tap for more steps...
Step 3.4.3.1
Simplify each term.
Tap for more steps...
Step 3.4.3.1.1
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 3.4.3.1.2
Multiply.
Tap for more steps...
Step 3.4.3.1.2.1
Combine.
Step 3.4.3.1.2.2
Simplify the numerator.
Tap for more steps...
Step 3.4.3.1.2.2.1
Apply the distributive property.
Step 3.4.3.1.2.2.2
Multiply by .
Step 3.4.3.1.2.2.3
Multiply by .
Step 3.4.3.1.2.3
Simplify the denominator.
Tap for more steps...
Step 3.4.3.1.2.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.3.1.2.3.1.1
Apply the distributive property.
Step 3.4.3.1.2.3.1.2
Apply the distributive property.
Step 3.4.3.1.2.3.1.3
Apply the distributive property.
Step 3.4.3.1.2.3.2
Simplify.
Tap for more steps...
Step 3.4.3.1.2.3.2.1
Multiply by .
Step 3.4.3.1.2.3.2.2
Multiply by .
Step 3.4.3.1.2.3.2.3
Multiply by .
Step 3.4.3.1.2.3.2.4
Multiply by .
Step 3.4.3.1.2.3.2.5
Raise to the power of .
Step 3.4.3.1.2.3.2.6
Raise to the power of .
Step 3.4.3.1.2.3.2.7
Use the power rule to combine exponents.
Step 3.4.3.1.2.3.2.8
Add and .
Step 3.4.3.1.2.3.2.9
Subtract from .
Step 3.4.3.1.2.3.2.10
Add and .
Step 3.4.3.1.2.3.3
Simplify each term.
Tap for more steps...
Step 3.4.3.1.2.3.3.1
Rewrite as .
Step 3.4.3.1.2.3.3.2
Multiply by .
Step 3.4.3.1.2.3.4
Add and .
Step 3.4.3.1.3
Cancel the common factor of and .
Tap for more steps...
Step 3.4.3.1.3.1
Factor out of .
Step 3.4.3.1.3.2
Factor out of .
Step 3.4.3.1.3.3
Factor out of .
Step 3.4.3.1.3.4
Cancel the common factors.
Tap for more steps...
Step 3.4.3.1.3.4.1
Factor out of .
Step 3.4.3.1.3.4.2
Cancel the common factor.
Step 3.4.3.1.3.4.3
Rewrite the expression.
Step 3.4.3.1.4
Split the fraction into two fractions.
Step 3.4.3.1.5
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 3.4.3.1.6
Multiply.
Tap for more steps...
Step 3.4.3.1.6.1
Combine.
Step 3.4.3.1.6.2
Simplify the numerator.
Tap for more steps...
Step 3.4.3.1.6.2.1
Apply the distributive property.
Step 3.4.3.1.6.2.2
Multiply by .
Step 3.4.3.1.6.2.3
Multiply .
Tap for more steps...
Step 3.4.3.1.6.2.3.1
Multiply by .
Step 3.4.3.1.6.2.3.2
Raise to the power of .
Step 3.4.3.1.6.2.3.3
Raise to the power of .
Step 3.4.3.1.6.2.3.4
Use the power rule to combine exponents.
Step 3.4.3.1.6.2.3.5
Add and .
Step 3.4.3.1.6.2.4
Simplify each term.
Tap for more steps...
Step 3.4.3.1.6.2.4.1
Rewrite as .
Step 3.4.3.1.6.2.4.2
Multiply by .
Step 3.4.3.1.6.2.5
Reorder and .
Step 3.4.3.1.6.3
Simplify the denominator.
Tap for more steps...
Step 3.4.3.1.6.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.3.1.6.3.1.1
Apply the distributive property.
Step 3.4.3.1.6.3.1.2
Apply the distributive property.
Step 3.4.3.1.6.3.1.3
Apply the distributive property.
Step 3.4.3.1.6.3.2
Simplify.
Tap for more steps...
Step 3.4.3.1.6.3.2.1
Multiply by .
Step 3.4.3.1.6.3.2.2
Multiply by .
Step 3.4.3.1.6.3.2.3
Multiply by .
Step 3.4.3.1.6.3.2.4
Multiply by .
Step 3.4.3.1.6.3.2.5
Raise to the power of .
Step 3.4.3.1.6.3.2.6
Raise to the power of .
Step 3.4.3.1.6.3.2.7
Use the power rule to combine exponents.
Step 3.4.3.1.6.3.2.8
Add and .
Step 3.4.3.1.6.3.2.9
Subtract from .
Step 3.4.3.1.6.3.2.10
Add and .
Step 3.4.3.1.6.3.3
Simplify each term.
Tap for more steps...
Step 3.4.3.1.6.3.3.1
Rewrite as .
Step 3.4.3.1.6.3.3.2
Multiply by .
Step 3.4.3.1.6.3.4
Add and .
Step 3.4.3.1.7
Cancel the common factor of and .
Tap for more steps...
Step 3.4.3.1.7.1
Factor out of .
Step 3.4.3.1.7.2
Factor out of .
Step 3.4.3.1.7.3
Factor out of .
Step 3.4.3.1.7.4
Cancel the common factors.
Tap for more steps...
Step 3.4.3.1.7.4.1
Factor out of .
Step 3.4.3.1.7.4.2
Cancel the common factor.
Step 3.4.3.1.7.4.3
Rewrite the expression.
Step 3.4.3.1.8
Split the fraction into two fractions.
Step 3.4.3.1.9
Move the negative in front of the fraction.
Step 3.4.3.1.10
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 3.4.3.1.11
Multiply.
Tap for more steps...
Step 3.4.3.1.11.1
Combine.
Step 3.4.3.1.11.2
Simplify the numerator.
Tap for more steps...
Step 3.4.3.1.11.2.1
Apply the distributive property.
Step 3.4.3.1.11.2.2
Multiply by .
Step 3.4.3.1.11.2.3
Multiply .
Tap for more steps...
Step 3.4.3.1.11.2.3.1
Multiply by .
Step 3.4.3.1.11.2.3.2
Raise to the power of .
Step 3.4.3.1.11.2.3.3
Raise to the power of .
Step 3.4.3.1.11.2.3.4
Use the power rule to combine exponents.
Step 3.4.3.1.11.2.3.5
Add and .
Step 3.4.3.1.11.2.4
Simplify each term.
Tap for more steps...
Step 3.4.3.1.11.2.4.1
Rewrite as .
Step 3.4.3.1.11.2.4.2
Multiply by .
Step 3.4.3.1.11.3
Simplify the denominator.
Tap for more steps...
Step 3.4.3.1.11.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.3.1.11.3.1.1
Apply the distributive property.
Step 3.4.3.1.11.3.1.2
Apply the distributive property.
Step 3.4.3.1.11.3.1.3
Apply the distributive property.
Step 3.4.3.1.11.3.2
Simplify.
Tap for more steps...
Step 3.4.3.1.11.3.2.1
Multiply by .
Step 3.4.3.1.11.3.2.2
Multiply by .
Step 3.4.3.1.11.3.2.3
Multiply by .
Step 3.4.3.1.11.3.2.4
Multiply by .
Step 3.4.3.1.11.3.2.5
Raise to the power of .
Step 3.4.3.1.11.3.2.6
Raise to the power of .
Step 3.4.3.1.11.3.2.7
Use the power rule to combine exponents.
Step 3.4.3.1.11.3.2.8
Add and .
Step 3.4.3.1.11.3.2.9
Subtract from .
Step 3.4.3.1.11.3.2.10
Add and .
Step 3.4.3.1.11.3.3
Simplify each term.
Tap for more steps...
Step 3.4.3.1.11.3.3.1
Rewrite as .
Step 3.4.3.1.11.3.3.2
Multiply by .
Step 3.4.3.1.11.3.4
Add and .
Step 3.4.3.1.12
Factor out of .
Tap for more steps...
Step 3.4.3.1.12.1
Factor out of .
Step 3.4.3.1.12.2
Factor out of .
Step 3.4.3.1.12.3
Factor out of .
Step 3.4.3.1.13
Multiply the numerator and denominator of by the conjugate of to make the denominator real.
Step 3.4.3.1.14
Multiply.
Tap for more steps...
Step 3.4.3.1.14.1
Combine.
Step 3.4.3.1.14.2
Simplify the numerator.
Tap for more steps...
Step 3.4.3.1.14.2.1
Apply the distributive property.
Step 3.4.3.1.14.2.2
Multiply by .
Step 3.4.3.1.14.2.3
Multiply by .
Step 3.4.3.1.14.3
Simplify the denominator.
Tap for more steps...
Step 3.4.3.1.14.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.3.1.14.3.1.1
Apply the distributive property.
Step 3.4.3.1.14.3.1.2
Apply the distributive property.
Step 3.4.3.1.14.3.1.3
Apply the distributive property.
Step 3.4.3.1.14.3.2
Simplify.
Tap for more steps...
Step 3.4.3.1.14.3.2.1
Multiply by .
Step 3.4.3.1.14.3.2.2
Multiply by .
Step 3.4.3.1.14.3.2.3
Multiply by .
Step 3.4.3.1.14.3.2.4
Multiply by .
Step 3.4.3.1.14.3.2.5
Raise to the power of .
Step 3.4.3.1.14.3.2.6
Raise to the power of .
Step 3.4.3.1.14.3.2.7
Use the power rule to combine exponents.
Step 3.4.3.1.14.3.2.8
Add and .
Step 3.4.3.1.14.3.2.9
Subtract from .
Step 3.4.3.1.14.3.2.10
Add and .
Step 3.4.3.1.14.3.3
Simplify each term.
Tap for more steps...
Step 3.4.3.1.14.3.3.1
Rewrite as .
Step 3.4.3.1.14.3.3.2
Multiply by .
Step 3.4.3.1.14.3.4
Add and .
Step 3.4.3.1.15
Factor out of .
Tap for more steps...
Step 3.4.3.1.15.1
Factor out of .
Step 3.4.3.1.15.2
Factor out of .
Step 3.4.3.1.15.3
Factor out of .
Step 3.4.3.2
Simplify terms.
Tap for more steps...
Step 3.4.3.2.1
Combine the numerators over the common denominator.
Step 3.4.3.2.2
Subtract from .
Step 3.4.3.2.3
Add and .
Step 3.4.3.3
Simplify each term.
Tap for more steps...
Step 3.4.3.3.1
Apply the distributive property.
Step 3.4.3.3.2
Multiply by .
Step 3.4.3.3.3
Multiply by .
Step 3.4.3.3.4
Apply the distributive property.
Step 3.4.3.3.5
Multiply by .
Step 3.4.3.3.6
Multiply by .
Step 3.4.3.4
Simplify by adding terms.
Tap for more steps...
Step 3.4.3.4.1
Combine the opposite terms in .
Tap for more steps...
Step 3.4.3.4.1.1
Subtract from .
Step 3.4.3.4.1.2
Add and .
Step 3.4.3.4.2
Subtract from .
Step 3.4.3.5
Simplify each term.
Tap for more steps...
Step 3.4.3.5.1
Cancel the common factor of and .
Tap for more steps...
Step 3.4.3.5.1.1
Factor out of .
Step 3.4.3.5.1.2
Factor out of .
Step 3.4.3.5.1.3
Factor out of .
Step 3.4.3.5.1.4
Cancel the common factors.
Tap for more steps...
Step 3.4.3.5.1.4.1
Factor out of .
Step 3.4.3.5.1.4.2
Cancel the common factor.
Step 3.4.3.5.1.4.3
Rewrite the expression.
Step 3.4.3.5.1.4.4
Divide by .
Step 3.4.3.5.2
Cancel the common factor of and .
Tap for more steps...
Step 3.4.3.5.2.1
Factor out of .
Step 3.4.3.5.2.2
Cancel the common factors.
Tap for more steps...
Step 3.4.3.5.2.2.1
Factor out of .
Step 3.4.3.5.2.2.2
Cancel the common factor.
Step 3.4.3.5.2.2.3
Rewrite the expression.
Step 3.4.3.5.2.2.4
Divide by .