Algebra Examples

Solve for x log base 2 of 2x+ log base 2 of x=5
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Use the product property of logarithms, .
Step 1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 1.2.1
Move .
Step 1.2.2
Multiply by .
Step 2
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.1
Cancel the common factor of and .
Tap for more steps...
Step 3.2.3.1.1
Factor out of .
Step 3.2.3.1.2
Cancel the common factors.
Tap for more steps...
Step 3.2.3.1.2.1
Factor out of .
Step 3.2.3.1.2.2
Cancel the common factor.
Step 3.2.3.1.2.3
Rewrite the expression.
Step 3.2.3.1.2.4
Divide by .
Step 3.2.3.2
Raise to the power of .
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Tap for more steps...
Step 3.4.1
Rewrite as .
Step 3.4.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.5.1
First, use the positive value of the to find the first solution.
Step 3.5.2
Next, use the negative value of the to find the second solution.
Step 3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Exclude the solutions that do not make true.