Algebra Examples

Divide Using Long Polynomial Division (5x^5-1)÷(5x+5)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+++++-
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
+++++-
Step 3
Multiply the new quotient term by the divisor.
+++++-
++
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
+++++-
--
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+++++-
--
-
Step 6
Pull the next terms from the original dividend down into the current dividend.
+++++-
--
-+
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
-
+++++-
--
-+
Step 8
Multiply the new quotient term by the divisor.
-
+++++-
--
-+
--
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
-
+++++-
--
-+
++
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
+++++-
--
-+
++
+
Step 11
Pull the next terms from the original dividend down into the current dividend.
-
+++++-
--
-+
++
++
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
-+
+++++-
--
-+
++
++
Step 13
Multiply the new quotient term by the divisor.
-+
+++++-
--
-+
++
++
++
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
-+
+++++-
--
-+
++
++
--
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
+++++-
--
-+
++
++
--
-
Step 16
Pull the next terms from the original dividend down into the current dividend.
-+
+++++-
--
-+
++
++
--
-+
Step 17
Divide the highest order term in the dividend by the highest order term in divisor .
-+-
+++++-
--
-+
++
++
--
-+
Step 18
Multiply the new quotient term by the divisor.
-+-
+++++-
--
-+
++
++
--
-+
--
Step 19
The expression needs to be subtracted from the dividend, so change all the signs in
-+-
+++++-
--
-+
++
++
--
-+
++
Step 20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+-
+++++-
--
-+
++
++
--
-+
++
+
Step 21
Pull the next terms from the original dividend down into the current dividend.
-+-
+++++-
--
-+
++
++
--
-+
++
+-
Step 22
Divide the highest order term in the dividend by the highest order term in divisor .
-+-+
+++++-
--
-+
++
++
--
-+
++
+-
Step 23
Multiply the new quotient term by the divisor.
-+-+
+++++-
--
-+
++
++
--
-+
++
+-
++
Step 24
The expression needs to be subtracted from the dividend, so change all the signs in
-+-+
+++++-
--
-+
++
++
--
-+
++
+-
--
Step 25
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+-+
+++++-
--
-+
++
++
--
-+
++
+-
--
-
Step 26
The final answer is the quotient plus the remainder over the divisor.