Enter a problem...
Algebra Examples
divided by
Step 1
Write the problem as a mathematical expression.
Step 2
Step 2.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
| + | - | + | + |
Step 2.2
Divide the highest order term in the dividend by the highest order term in divisor .
| + | - | + | + |
Step 2.3
Multiply the new quotient term by the divisor.
| + | - | + | + | ||||||||
| + | + |
Step 2.4
The expression needs to be subtracted from the dividend, so change all the signs in
| + | - | + | + | ||||||||
| - | - |
Step 2.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - |
Step 2.6
Pull the next terms from the original dividend down into the current dividend.
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + |
Step 2.7
Divide the highest order term in the dividend by the highest order term in divisor .
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + |
Step 2.8
Multiply the new quotient term by the divisor.
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| - | - |
Step 2.9
The expression needs to be subtracted from the dividend, so change all the signs in
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + |
Step 2.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + |
Step 2.11
Pull the next terms from the original dividend down into the current dividend.
| - | |||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + |
Step 2.12
Divide the highest order term in the dividend by the highest order term in divisor .
| - | + | ||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + |
Step 2.13
Multiply the new quotient term by the divisor.
| - | + | ||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + | ||||||||||
| + | + |
Step 2.14
The expression needs to be subtracted from the dividend, so change all the signs in
| - | + | ||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + | ||||||||||
| - | - |
Step 2.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
| - | + | ||||||||||
| + | - | + | + | ||||||||
| - | - | ||||||||||
| - | + | ||||||||||
| + | + | ||||||||||
| + | + | ||||||||||
| - | - | ||||||||||
| - |
Step 2.16
The final answer is the quotient plus the remainder over the divisor.
Step 3
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.