Enter a problem...
Algebra Examples
Step 1
Step 1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.2
Write the factored form using these integers.
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Step 2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 2.4
The prime factors for are .
Step 2.4.1
has factors of and .
Step 2.4.2
has factors of and .
Step 2.5
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 2.6
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 2.7
Multiply .
Step 2.7.1
Multiply by .
Step 2.7.2
Multiply by .
Step 2.8
The factor for is itself.
occurs time.
Step 2.9
The factors for are , which is multiplied by each other times.
occurs times.
Step 2.10
The factor for is itself.
occurs time.
Step 2.11
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either term.
Step 2.12
Multiply by .
Step 2.13
The LCM for is the numeric part multiplied by the variable part.
Step 3
Step 3.1
Multiply each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Rewrite using the commutative property of multiplication.
Step 3.2.2
Cancel the common factor of .
Step 3.2.2.1
Factor out of .
Step 3.2.2.2
Cancel the common factor.
Step 3.2.2.3
Rewrite the expression.
Step 3.2.3
Cancel the common factor of .
Step 3.2.3.1
Factor out of .
Step 3.2.3.2
Cancel the common factor.
Step 3.2.3.3
Rewrite the expression.
Step 3.2.4
Apply the distributive property.
Step 3.2.5
Simplify the expression.
Step 3.2.5.1
Multiply by .
Step 3.2.5.2
Rewrite as .
Step 3.3
Simplify the right side.
Step 3.3.1
Simplify each term.
Step 3.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.3.1.2
Cancel the common factor of .
Step 3.3.1.2.1
Factor out of .
Step 3.3.1.2.2
Cancel the common factor.
Step 3.3.1.2.3
Rewrite the expression.
Step 3.3.1.3
Cancel the common factor of .
Step 3.3.1.3.1
Cancel the common factor.
Step 3.3.1.3.2
Rewrite the expression.
Step 3.3.1.4
Expand using the FOIL Method.
Step 3.3.1.4.1
Apply the distributive property.
Step 3.3.1.4.2
Apply the distributive property.
Step 3.3.1.4.3
Apply the distributive property.
Step 3.3.1.5
Simplify and combine like terms.
Step 3.3.1.5.1
Simplify each term.
Step 3.3.1.5.1.1
Multiply by .
Step 3.3.1.5.1.2
Move to the left of .
Step 3.3.1.5.1.3
Multiply by .
Step 3.3.1.5.1.4
Multiply by .
Step 3.3.1.5.2
Add and .
Step 3.3.1.6
Cancel the common factor of .
Step 3.3.1.6.1
Move the leading negative in into the numerator.
Step 3.3.1.6.2
Factor out of .
Step 3.3.1.6.3
Cancel the common factor.
Step 3.3.1.6.4
Rewrite the expression.
Step 3.3.1.7
Multiply by .
Step 3.3.2
Subtract from .
Step 4
Step 4.1
Subtract from both sides of the equation.
Step 4.2
Add to both sides of the equation.
Step 4.3
Combine the opposite terms in .
Step 4.3.1
Subtract from .
Step 4.3.2
Add and .
Step 4.4
Add and .