Enter a problem...
Algebra Examples
Step 1
Apply the product rule to .
Step 2
Step 2.1
Factor out of .
Step 2.2
Factor out of .
Step 2.3
Factor out of .
Step 3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4
Step 4.1
Set equal to .
Step 4.2
Solve for .
Step 4.2.1
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 4.2.2
Simplify the exponent.
Step 4.2.2.1
Simplify the left side.
Step 4.2.2.1.1
Simplify .
Step 4.2.2.1.1.1
Multiply the exponents in .
Step 4.2.2.1.1.1.1
Apply the power rule and multiply exponents, .
Step 4.2.2.1.1.1.2
Cancel the common factor of .
Step 4.2.2.1.1.1.2.1
Cancel the common factor.
Step 4.2.2.1.1.1.2.2
Rewrite the expression.
Step 4.2.2.1.1.2
Simplify.
Step 4.2.2.2
Simplify the right side.
Step 4.2.2.2.1
Raising to any positive power yields .
Step 5
Step 5.1
Set equal to .
Step 5.2
Solve for .
Step 5.2.1
Subtract from both sides of the equation.
Step 5.2.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 5.2.3
Simplify the exponent.
Step 5.2.3.1
Simplify the left side.
Step 5.2.3.1.1
Simplify .
Step 5.2.3.1.1.1
Apply the product rule to .
Step 5.2.3.1.1.2
Rewrite as .
Step 5.2.3.1.1.3
Raise to the power of .
Step 5.2.3.1.1.4
Rewrite as .
Step 5.2.3.1.1.5
Multiply the exponents in .
Step 5.2.3.1.1.5.1
Apply the power rule and multiply exponents, .
Step 5.2.3.1.1.5.2
Cancel the common factor of .
Step 5.2.3.1.1.5.2.1
Cancel the common factor.
Step 5.2.3.1.1.5.2.2
Rewrite the expression.
Step 5.2.3.1.1.5.3
Cancel the common factor of .
Step 5.2.3.1.1.5.3.1
Cancel the common factor.
Step 5.2.3.1.1.5.3.2
Rewrite the expression.
Step 5.2.3.1.1.6
Simplify.
Step 5.2.3.2
Simplify the right side.
Step 5.2.3.2.1
Simplify .
Step 5.2.3.2.1.1
Apply the product rule to .
Step 5.2.3.2.1.2
Rewrite as .
Step 5.2.3.2.1.3
Raise to the power of .
Step 5.2.3.2.1.4
Rewrite as .
Step 5.2.3.2.1.5
Simplify the expression.
Step 5.2.3.2.1.5.1
Multiply the exponents in .
Step 5.2.3.2.1.5.1.1
Apply the power rule and multiply exponents, .
Step 5.2.3.2.1.5.1.2
Cancel the common factor of .
Step 5.2.3.2.1.5.1.2.1
Cancel the common factor.
Step 5.2.3.2.1.5.1.2.2
Rewrite the expression.
Step 5.2.3.2.1.5.2
Rewrite as .
Step 5.2.3.2.1.5.3
Apply the power rule and multiply exponents, .
Step 5.2.3.2.1.6
Cancel the common factor of .
Step 5.2.3.2.1.6.1
Cancel the common factor.
Step 5.2.3.2.1.6.2
Rewrite the expression.
Step 5.2.3.2.1.7
Evaluate the exponent.
Step 5.2.3.2.1.8
Move to the left of .
Step 5.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.2.4.1
First, use the positive value of the to find the first solution.
Step 5.2.4.2
Divide each term in by and simplify.
Step 5.2.4.2.1
Divide each term in by .
Step 5.2.4.2.2
Simplify the left side.
Step 5.2.4.2.2.1
Cancel the common factor of .
Step 5.2.4.2.2.1.1
Cancel the common factor.
Step 5.2.4.2.2.1.2
Divide by .
Step 5.2.4.2.3
Simplify the right side.
Step 5.2.4.2.3.1
Cancel the common factor of .
Step 5.2.4.2.3.1.1
Cancel the common factor.
Step 5.2.4.2.3.1.2
Divide by .
Step 5.2.4.3
Next, use the negative value of the to find the second solution.
Step 5.2.4.4
Divide each term in by and simplify.
Step 5.2.4.4.1
Divide each term in by .
Step 5.2.4.4.2
Simplify the left side.
Step 5.2.4.4.2.1
Cancel the common factor of .
Step 5.2.4.4.2.1.1
Cancel the common factor.
Step 5.2.4.4.2.1.2
Divide by .
Step 5.2.4.4.3
Simplify the right side.
Step 5.2.4.4.3.1
Cancel the common factor of .
Step 5.2.4.4.3.1.1
Cancel the common factor.
Step 5.2.4.4.3.1.2
Divide by .
Step 5.2.4.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 6
The final solution is all the values that make true.