Algebra Examples

Solve for x 2 log base 3 of x- log base 3 of x-2=2
Step 1
Move all the terms containing a logarithm to the left side of the equation.
Step 2
Simplify the left side.
Tap for more steps...
Step 2.1
Simplify .
Tap for more steps...
Step 2.1.1
Simplify by moving inside the logarithm.
Step 2.1.2
Use the quotient property of logarithms, .
Step 3
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 4
Cross multiply to remove the fraction.
Step 5
Simplify .
Tap for more steps...
Step 5.1
Raise to the power of .
Step 5.2
Apply the distributive property.
Step 5.3
Multiply by .
Step 6
Subtract from both sides of the equation.
Step 7
Factor out of .
Tap for more steps...
Step 7.1
Factor out of .
Step 7.2
Factor out of .
Step 7.3
Factor out of .
Step 8
Simplify .
Tap for more steps...
Step 8.1
Apply the distributive property.
Step 8.2
Simplify the expression.
Tap for more steps...
Step 8.2.1
Multiply by .
Step 8.2.2
Move to the left of .
Step 9
Add to both sides of the equation.
Step 10
Factor using the AC method.
Tap for more steps...
Step 10.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 10.2
Write the factored form using these integers.
Step 11
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 12
Set equal to and solve for .
Tap for more steps...
Step 12.1
Set equal to .
Step 12.2
Add to both sides of the equation.
Step 13
Set equal to and solve for .
Tap for more steps...
Step 13.1
Set equal to .
Step 13.2
Add to both sides of the equation.
Step 14
The final solution is all the values that make true.